- Browse by Author
Browsing by Author "Anderson, Jennifer L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Regenerative tissue filler for breast conserving surgery and other soft tissue restoration and reconstruction needs(Springer Nature, 2021-02-01) Puls, Theodore J.; Fisher, Carla S.; Cox, Abigail; Plantenga, Jeannie M.; McBride, Emma L.; Anderson, Jennifer L.; Goergen, Craig J.; Bible, Melissa; Moller, Tracy; Voytik‑Harbin, Sherry L.; Surgery, School of MedicineComplete removal of cancerous tissue and preservation of breast cosmesis with a single breast conserving surgery (BCS) is essential for surgeons. New and better options would allow them to more consistently achieve this goal and expand the number of women that receive this preferred therapy, while minimizing the need for re-excision and revision procedures or more aggressive surgical approaches (i.e., mastectomy). We have developed and evaluated a regenerative tissue filler that is applied as a liquid to defects during BCS prior to transitioning to a fibrillar collagen scaffold with soft tissue consistency. Using a porcine simulated BCS model, the collagen filler was shown to induce a regenerative healing response, characterized by rapid cellularization, vascularization, and progressive breast tissue neogenesis, including adipose tissue and mammary glands and ducts. Unlike conventional biomaterials, no foreign body response or inflammatory-mediated “active” biodegradation was observed. The collagen filler also did not compromise simulated surgical re-excision, radiography, or ultrasonography procedures, features that are important for clinical translation. When post-BCS radiation was applied, the collagen filler and its associated tissue response were largely similar to non-irradiated conditions; however, as expected, healing was modestly slower. This in situ scaffold-forming collagen is easy to apply, conforms to patient-specific defects, and regenerates complex soft tissues in the absence of inflammation. It has significant translational potential as the first regenerative tissue filler for BCS as well as other soft tissue restoration and reconstruction needs.Item Toward Automation of the Supine Pressor Test for Preeclampsia(American Society of Mechanical Enginners, 2019-11) Qureshi, Hamna J.; Ma, Jessica L.; Anderson, Jennifer L.; Bosinski, Brett M.; Acharya, Aditi; Bennett, Rachel D.; Haas, David M.; Cox, Abigail D.; Wodicka, George R.; Reuter, David G.; Goergen, Craig J.; Medicine, School of MedicinePreeclampsia leads to increased risk of morbidity and mortality for both mother and fetus. Most previous studies have largely neglected mechanical compression of the left renal vein by the gravid uterus as a potential mechanism. In this study, we first used a murine model to investigate the pathophysiology of left renal vein constriction. The results indicate that prolonged renal vein stenosis after 14 days can cause renal necrosis and an increase in blood pressure (BP) of roughly 30 mmHg. The second part of this study aimed to automate a diagnostic tool, known as the supine pressor test (SPT), to enable pregnant women to assess their preeclampsia development risk. A positive SPT has been previously defined as an increase of at least 20 mmHg in diastolic BP when switching between left lateral recumbent and supine positions. The results from this study established a baseline BP increase between the two body positions in nonpregnant women and demonstrated the feasibility of an autonomous SPT in pregnant women. Our results demonstrate that there is a baseline increase in BP of roughly 10-14 mmHg and that pregnant women can autonomously perform the SPT. Overall, this work in both rodents and humans suggests that (1) stenosis of the left renal vein in mice leads to elevation in BP and acute renal failure, (2) nonpregnant women experience a baseline increase in BP when they shift from left lateral recumbent to supine position, and (3) the SPT can be automated and used autonomously.