- Browse by Author
Browsing by Author "Bellido, Teresita"
Now showing 1 - 10 of 42
Results Per Page
Sort Options
Item Aberrantly elevated Wnt signaling is responsible for cementum overgrowth and dental ankylosis(Elsevier, 2018) Wu, Yan; Yuan, Xue; Perez, Kristy C.; Hyman, Sydnee; Wang, Liao; Pellegrini, Gretel; Salmon, Benjamin; Bellido, Teresita; Helms, Jill A.; Anatomy and Cell Biology, School of MedicineVertebrate teeth are attached to the jawbones using a variety of methods but in mammals, a fibrous connection is the norm. This fibrous periodontal ligament (PDL) allows teeth to move in the jawbones in response to natural eruptive forces, mastication, and orthodontic tooth movement. In some disease states the PDL either calcifies or is replaced by a mineralized tissue and the result is ankylosis, where the tooth is fused to the alveolar bone. To understand how the PDL maintains this fibrous state we examined a strain of mice in which tooth movement is arrested. DaβcatOt mice express a stabilized form of β-catenin in DMP1-positive alveolar bone osteocytes and cementocytes, which results in elevated Wnt signaling throughout the periodontium. As a consequence, there is an accrual of massive amounts of cellular cementum and alveolar bone, the PDL itself calcifies and teeth become ankylosed. These data suggest that to maintain its fibrous nature, Wnt signaling must normally be repressed in the PDL space.Item Aplidin (plitidepsin) is a novel anti-myeloma agent with potent anti-resorptive activity mediated by direct effects on osteoclasts(Impact Journals, 2019-04-12) Delgado-Calle, Jesus; Kurihara, Noriyoshi; Atkinson, Emily G.; Nelson, Jessica; Miyagawa, Kazuaki; Galmarini, Carlos Maria; Roodman, G. David; Bellido, Teresita; Medicine, School of MedicineDespite recent progress in its treatment, Multiple Myeloma (MM) remains incurable and its associated bone disease persists even after complete remission. Thus, identification of new therapeutic agents that simultaneously suppress MM growth and protect bone is an unmet need. Herein, we examined the effects of Aplidin, a novel anti-cancer marine-derived compound, on MM and bone cells. In vitro, Aplidin potently inhibited MM cell growth and induced apoptosis, effects that were enhanced by dexamethasone (Dex) and bortezomib (Btz). Aplidin modestly reduced osteocyte/osteoblast viability and decreased osteoblast mineralization, effects that were enhanced by Dex and partially prevented by Btz. Further, Aplidin markedly decreased osteoclast precursor numbers and differentiation, and reduced mature osteoclast number and resorption activity. Moreover, Aplidin reduced Dex-induced osteoclast differentiation and further decreased osteoclast number when combined with Btz. Lastly, Aplidin alone, or suboptimal doses of Aplidin combined with Dex or Btz, decreased tumor growth and bone resorption in ex vivo bone organ cultures that reproduce the 3D-organization and the cellular diversity of the MM/bone marrow niche. These results demonstrate that Aplidin has potent anti-myeloma and anti-resorptive properties, and enhances proteasome inhibitors blockade of MM growth and bone destruction.Item Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner(MDPI, 2016-07-11) Pellegrini, Gretel G.; Morales, Cynthya C.; Wallace, Taylor C.; Plotkin, Lilian I.; Bellido, Teresita; Department of Anatomy & Cell Biology, IU School of MedicineOats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further, these regulatory actions are independent of Nrf2.Item Bidirectional Notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma(American Association for Cancer Research, 2016-03-01) Delgado-Calle, Jesus; Anderson, Judith; Cregor, Meloney D.; Hiasa, Masahiro; Chirgwin, John M.; Carlesso, Nadia; Yoneda, Toshiyuki; Mohammad, Khalid S.; Plotkin, Lilian I.; Roodman, G. David; Bellido, Teresita; Department of Anatomy & Cell Biology, IU School of MedicineIn multiple myeloma, an overabundance of monoclonal plasma cells in the bone marrow induces localized osteolytic lesions that rarely heal due to increased bone resorption and suppressed bone formation. Matrix-embedded osteocytes comprise more than 95% of bone cells and are major regulators of osteoclast and osteoblast activity, but their contribution to multiple myeloma growth and bone disease is unknown. Here, we report that osteocytes in a mouse model of human MM physically interact with multiple myeloma cells in vivo, undergo caspase-3-dependent apoptosis, and express higher RANKL (TNFSF11) and sclerostin levels than osteocytes in control mice. Mechanistic studies revealed that osteocyte apoptosis was initiated by multiple myeloma cell-mediated activation of Notch signaling and was further amplified by multiple myeloma cell-secreted TNF. The induction of apoptosis increased osteocytic Rankl expression, the osteocytic Rankl/Opg (TNFRSF11B) ratio, and the ability of osteocytes to attract osteoclast precursors to induce local bone resorption. Furthermore, osteocytes in contact with multiple myeloma cells expressed high levels of Sost/sclerostin, leading to a reduction in Wnt signaling and subsequent inhibition of osteoblast differentiation. Importantly, direct contact between osteocytes and multiple myeloma cells reciprocally activated Notch signaling and increased Notch receptor expression, particularly Notch3 and 4, stimulating multiple myeloma cell growth. These studies reveal a previously unknown role for bidirectional Notch signaling that enhances MM growth and bone disease, suggesting that targeting osteocyte-multiple myeloma cell interactions through specific Notch receptor blockade may represent a promising treatment strategy in multiple myeloma.Item Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia(Wiley, 2016-06) Clinkenbeard, Erica L.; Cass, Taryn A.; Ni, Pu; Hum, Julia M.; Bellido, Teresita; Allen, Matthew R.; White, Kenneth E.; Department of Medical and Molecular Genetics, School of MedicineThe transgenic and knockout (KO) animals involving Fgf23 have been highly informative in defining novel aspects of mineral metabolism, but are limited by shortened lifespan, inability of spatial/temporal FGF23 control, and infertility of the global KO. To more finely test the role of systemic and genetic influences in FGF23 production, a mouse was developed that carried a floxed ("f")-Fgf23 allele (exon 2 floxed) which demonstrated in vivo recombination when bred to global-Cre transgenic mice (eIIa-cre). Mice homozygous for the recombined allele ("Δ") had undetectable serum intact FGF23, elevated serum phosphate (p < 0.05), and increased kidney Cyp27b1 mRNA (p < 0.05), similar to global Fgf23-KO mice. To isolate cellular FGF23 responses during phosphate challenge, Fgf23(Δ/f) mice were mated with early osteoblast type Iα1 collagen 2.3-kb promoter-cre mice (Col2.3-cre) and the late osteoblast/early osteocyte Dentin matrix protein-1-cre (Dmp1-cre). Fgf23(Δ/f) /Col2.3-cre(+) and Fgf23(Δ/f) /Dmp1-cre(+) exhibited reduced baseline serum intact FGF23 versus controls. After challenge with high-phosphate diet Cre(-) mice had 2.1-fold to 2.5-fold increased serum FGF23 (p < 0.01), but Col2.3-cre(+) mice had no significant increase, and Dmp1-cre(+) mice had only a 37% increase (p < 0.01) despite prevailing hyperphosphatemia in both models. The Fgf23(Δ/f) /Col2.3-cre was bred onto the Hyp (murine X-linked hypophosphatemia [XLH] model) genetic background to test the contribution of osteoblasts and osteocytes to elevated FGF23 and Hyp disease phenotypes. Whereas Hyp mice maintained inappropriately elevated FGF23 considering their marked hypophosphatemia, Hyp/Fgf23(Δ/f) /Col2.3-cre(+) mice had serum FGF23 <4% of Hyp (p < 0.01), and this targeted restriction normalized serum phosphorus and ricketic bone disease. In summary, deleting FGF23 within early osteoblasts and osteocytes demonstrated that both cell types contribute to baseline circulating FGF23 concentrations, and that targeting osteoblasts/osteocytes for FGF23 production can modify systemic responses to changes in serum phosphate concentrations and rescue the Hyp genetic syndrome.Item Control of bone mass and remodeling by PTH receptor signaling in osteocytes(2008-08-13) O'Brien, Charles A.; Plotkin, Lilian I.; Galli, Carlo; Goellner, Joseph J.; Gortazar, Arancha R.; Allen, Matthew R.; Robling, Alexander G.; Bouxsein, Mary; Schipani, Ernestina; Turner, Charles H.; Jilka, Robert L.; Weinstein, Robert S.; Manolagas, Stavros C.; Bellido, TeresitaOsteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively.Item A Correlation between Wnt/Beta-catenin Signaling and the Rate of Dentin Secretion(Elsevier, 2019-11) Zhao, Yuan; Yuan, Xue; Bellido, Teresita; Helms, Jill A.; Anatomy and Cell Biology, School of MedicineIntroduction Odontoblasts produce dentin throughout life and in response to trauma. The purpose of this study was to identify the roles of endogenous Wnt signaling in regulating the rate of dentin accumulation. Methods Histology, immunohistochemistry, vital dye labeling, and histomorphometric assays were used to quantify the rate of dentin accumulation as a function of age. Two strains of Wnt reporter mice were used to identify and follow the distribution and number of Wnt-responsive odontoblasts as a function of age. To show a causal relationship between dentin secretion and Wnt signaling, dentin accumulation was monitored in a strain of mice in which Wnt signaling was aberrantly elevated. Results Dentin deposition occurs throughout life, but the rate of accumulation slows with age. This decline in dentin secretion correlates with a decrease in endogenous Wnt signaling. In a genetically modified strain of mice, instead of tubular dentin, aberrantly elevated Wnt signaling resulted in accumulation of reparative dentin or osteodentin secreted from predontoblasts. Conclusions Wnt signaling regulates dentin secretion by odontoblasts, and the formation of reparative or osteodentin is the direct consequence of elevated Wnt signaling. These preclinical data have therapeutic implications for the development of a biologically based pulp capping medicant.Item Cx43 Overexpression in Osteocytes Prevents Osteocyte Apoptosis and Preserves Cortical Bone Quality in Aging Mice(Wiley, 2018-02-26) Davis, Hannah M.; Aref, Mohammad W.; Aguilar‐Perez, Alexandra; Pacheco‐Costa, Rafael; Allen, Kimberly; Valdez, Sinai; Herrera, Carmen; Atkinson, Emily G.; Mohammad, Arwa; Lopez, David; Harris, Marie A.; Harris, Stephen E.; Allen, Matthew; Bellido, Teresita; Plotkin, Lilian I.; Anatomy and Cell Biology, School of MedicineYoung, skeletally mature mice lacking Cx43 in osteocytes exhibit increased osteocyte apoptosis and decreased bone strength, resembling the phenotype of old mice. Further, the expression of Cx43 in bone decreases with age, suggesting a contribution of reduced Cx43 levels to the age-related changes in the skeleton. We report herein that Cx43 overexpression in osteocytes achieved by using the DMP1-8kb promoter (Cx43OT mice) attenuates the skeletal cortical but not trabecular bone phenotype of aged, 14-month-old mice. The percentage of Cx43-expressing osteocytes was higher in Cx43OT mice, whereas the percentage of Cx43-positive osteoblasts remained similar to wild-type (WT) littermate control mice. The percentage of apoptotic osteocytes and osteoblasts was increased in aged WT mice compared with skeletally mature, 6-month-old WT mice, and the percentage of apoptotic osteocytes, but not osteoblasts, was decreased in age-matched Cx43OT mice. Aged WT mice exhibited decreased bone formation and increased bone resorption as quantified by histomorphometric analysis and circulating markers compared with skeletally mature mice. Further, aged WT mice exhibited the expected decrease in bone biomechanical structural and material properties compared with young mice. Cx43 overexpression prevented the increase in osteoclasts and decrease in bone formation on the endocortical surfaces and the changes in circulating markers in the aged mice. Moreover, the ability of bone to resist damage was preserved in aged Cx43OT mice both at the structural and material level. All together, these findings suggest that increased Cx43 expression in osteocytes ameliorates age-induced cortical bone changes by preserving osteocyte viability and maintaining bone formation, leading to improved bone strength. © 2018 American Society for Bone and Mineral Research.Item Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain(Elsevier, 2015-12) Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.; Department of Anatomy & Cell Biology, IU School of MedicineConnexin 43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43(ΔCT/fl)) were studied. Cx43(ΔCT/fl) mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43(fl/fl) controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43(ΔCT) is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43(ΔCT) mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43(ΔCT) were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions.Item Differential involvement of Wnt signaling in Bmp regulation of cancellous versus periosteal bone growth(Springer Nature, 2017-06-06) He, Guangxu; Shi, Yu; Lim, Joohyun; Bellido, Teresita; Ni, Jiangdong; Long, Fanxin; Anatomy and Cell Biology, School of MedicineBone morphogenetic proteins (Bmp) are well-known to induce bone formation following chondrogenesis, but the direct role of Bmp signaling in the osteoblast lineage is not completely understood. We have recently shown that deletion of the receptor Bmpr1a in the osteoblast lineage with Dmp1-Cre reduces osteoblast activity in general but stimulates proliferation of preosteoblasts specifically in the cancellous bone region, resulting in diminished periosteal bone growth juxtaposed with excessive cancellous bone formation. Because expression of sclerostin (SOST), a secreted Wnt antagonist, is notably reduced in the Bmpr1a-deficient osteocytes, we have genetically tested the hypothesis that increased Wnt signaling might mediate the increase in cancellous bone formation in response to Bmpr1a deletion. Forced expression of human SOST from a Dmp1 promoter fragment partially rescues preosteoblast hyperproliferation and cancellous bone overgrowth in the Bmpr1a mutant mice, demonstrating functional interaction between Bmp and Wnt signaling in the cancellous bone compartment. To test whether increased Wnt signaling can compensate for the defect in periosteal growth caused by Bmpr1a deletion, we have generated compound mutants harboring a hyperactive mutation (A214V) in the Wnt receptor Lrp5. However, the mutant Lrp5 does not restore periosteal bone growth in the Bmpr1a-deficient mice. Thus, Bmp signaling restricts cancellous bone accrual partly through induction of SOST that limits preosteoblast proliferation, but promotes periosteal bone growth apparently independently of Wnt activation.