- Browse by Author
Browsing by Author "Bigsby, Robert M."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Estrogenic Activity of the Polybrominated Diphenyl Ether Flame Retardant Mixture DE-71(2008-03-05T20:08:04Z) Mercado-Feliciano, Minerva; Bigsby, Robert M.; Klaunig, James E.; Jeng, Meei-Huey; Kamendulis, Lisa; Skaar, Todd; Sullivan, William J., Jr.Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants suspected to act as endocrine disruptors. We tested the commercial PBDE mixture DE-71 and its in vivo metabolites for estrogenic activity. MCF-7 breast cancer cells culture, ERE-luciferase gene expression, 3H-β-estradiol displacement from recombinant ERα, and ovariectomized (OVX) mice served as bioassays. Although DE-71 did not bind ERα, it was able to increase MCF-7 cell proliferation and this was prevented by the antiestrogen fulvestrant. DE-71 co-treatment reduced the effect of estradiol in MCF-7 cells. In the OVX mouse (BALB/c) 3-day assay, DE-71 administered alone had no effect on uterine or vaginal tissues but when administered subcutaneously potentiated estradiol’s effect on uterine weight in a dose-dependent manner. DE-71 administered SQ to BALB/c mice for 34 days slightly increased uterine epithelial height (UEH), vaginal epithelial thickness (VET) and mammary ductal lumen area, and attenuated the estradiol-induced increase in UEH; these effects were not seen in C57BL/6 mice. DE-71 increased liver weight in BALB/c, C57BL/6 and estrogen receptor-alpha knockout (ERαKO) mice. Liver cytochrome P450 1A (CYP1A) and CYP2B activities increased 2.5-fold and 7-fold respectively when DE-71 was administered PO, but only CYP2B increased (5-fold) after SQ treatment. Six OH-PBDE metabolites were found in mice after 34-day DE-71 treatment and all were able to bind recombinant ERα. Para-hydroxylated metabolites displayed a 10- to 30-fold higher affinity for ERα compared to ortho-hydroxylated PBDEs. Para-OH-PBDEs induced ERE-luciferase and produced an additive effect when coadministered with β-estradiol. DE-71 was also additive with β-estradiol. At high concentrations (≥ 5x10-5 M), ortho-OH-PBDEs were antiestrogenic in the ERE-luciferase assay. In conclusion, DE-71 behaves as a weak estrogen in both MCF-7 breast cancer cells and ovariectomized adult mice. Mice strain, treatment route and duration determined if DE-71 was estrogenic. BALB/c mice are more susceptible to DE-71 effects in estrogen target tissues than C57BL/6 mice. DE-71 increased liver weight, 5%-51% depending on mouse strain and treatment regime, independently of ERα. The observations that the DE-71 mixture does not displace 3H-β-estradiol from ERα while the hydroxylated metabolites do, suggest that the cellular and tissue effects were due to a metabolic activation of individual congeners.Item Interleukin-1α Promotes Tumor Growth and Cachexia in MCF-7 Xenograft Model of Breast Cancer(Elsevier, 2003-12) Kumar, Suresh; Kishimoto, Hiromitsu; Chua, Hui Lin; Badve, Sunil; Miller, Kathy D.; Bigsby, Robert M.; Nakshatri, HarikrishnaProgression of breast cancer involves cross-talk between epithelial and stromal cells. This cross-talk is mediated by growth factors and cytokines secreted by both cancer and stromal cells. We previously reported expression of interleukin (IL)-1α in a subset of breast cancers and demonstrated that IL-1α is an autocrine and paracrine inducer of prometastatic genes in in vitro systems. To understand the role of IL-1α in breast cancer progression in vivo, we studied the growth of MCF-7 breast cancer cells overexpressing a secreted form of IL-1α (MCF-7IL-1α) in nude mice. MCF-7IL-1α cells formed rapidly growing estrogen-dependent tumors compared to parental cells. Interestingly, IL-1α expression alone was not sufficient for metastasis in vivo although in vitro studies showed induction of several prometastatic genes and matrix metalloproteinase activity in response to cross-talk between IL-1α-expressing cancer cells and fibroblasts. Animals implanted with MCF-7IL-1α cells were cachetic, which correlated with increased leptin serum levels but not other known cachexia-inducing cytokines such as IL-6, tumor necrosis factor, or interferon gamma. Serum triglycerides, but not blood glucose were lower in animals with MCF-7IL-1α cell-derived tumors compared to animals with control cell-derived tumors. Cachexia was associated with atrophy of epidermal and adnexal structures of skin; a similar phenotype is reported in triglyceride-deficient mice and in ob/ob mice injected with leptin. Mouse leptin-specific transcripts could be detected only in MCF-7IL-1α cell-derived tumors, which suggests that IL-1α increases leptin expression in stromal cells recruited into the tumor microenvironment. Despite increased serum leptin levels, animals with MCF-7IL-1α cell-derived tumors were not anorexic suggesting only peripheral action of tumor-derived leptin, which principally targets lipid metabolism. Taken together, these results suggest that cancer cell-derived cytokines, such as IL-1α, induce cachexia by affecting leptin-dependent metabolic pathways.Item Interstrain differences in the development of pyometra after estrogen treatment of rats(American Association for Laboratory Animal Science, 2009-09) Brossia, Lisa Jane; Roberts, Christopher Sean; Lopez, Jennifer T.; Bigsby, Robert M.; Dynlacht, Joseph R.; Pharmacology and Toxicology, School of MedicineThis case report describes the unanticipated development of pyometra in Brown Norway rats after treatment with estrogen. Sprague Dawley and Brown Norway rats were ovariectomized and randomly assigned to treatment groups (subcutaneous implantation of either a capsule containing 20 mg 17beta-estradiol or an empty capsule, as a control). After irradiation of only the right eye, the rats were followed for several months in an attempt to determine the effects of estrogen on radiation cataractogenesis and investigate potential strain differences in this phenomenon. However, all Brown Norway rats that received estradiol treatment developed pyometra, whereas none the Sprague Dawley or control Brown Norway rats did. This case demonstrates the potential adverse effects of exogenous estrogen therapy, which are strain-specific in the rat. Caution should be taken when designing estrogen-related experiments involving Brown Norway rats and other potentially sensitive strains.Item Role of estrogen and progesterone receptors in neonatal uterine cell proliferation in the mouse(2015-01) Cooke, P.S.; Nanjappa, M. K.; Medrano, T.I.; Lydon, J.P.; Bigsby, Robert M.; Department of Obstetrics and Gynecology, IU School of MedicineThe major endocrine regulators of the female reproductive tract are 17β-estradiol (E2) and progesterone (P4). This review discusses our recent work related to the roles of E2 and P4 and their receptors, estrogen receptor 1 (ESR1) and progesterone receptor (PR), respectively, in the neonatal uterus. Neonatal uterine cells in mice are mitogenically responsive to estrogens, but neonatal ovariectomy does not inhibit pre-weaning uterine cell proliferation, indicating that this process does not require endogenous estrogens. Neonatal uterine cell proliferation could result from ligand-independent growth factor activation of ESR1, or be independent of ESR1 neonatally despite its obligatory role in adult uterine epithelial proliferation. To determine the role of ESR1 in uterine development, we analyzed cell proliferation and uterine gland development (adenogenesis) in wild-type (WT) and Esr1 knockout (Esr1KO) mice postnatally. Our results indicate that pre-weaning uterine cell proliferation and adenogenesis are independent of ESR1, but these processes become dependent on E2/ESR1 signaling for maintenance and further proliferation and uterine growth during puberty. How pre- weaning uterine cell proliferation and adenogenesis occur independently of E2/ESR1 signaling remains unknown, but ligand-independent activation of ESR1 is not involved in this process. The synthetic glucocorticoid dexamethasone (Dex) inhibits luminal epithelial (LE) proliferation in neonatal mouse uteri, but it has been unclear whether Dex effects were mediated by glucocorticoid receptor (GR) and/or PR. We have used PR knockout (PRKO) mice to test whether PR is required for Dex inhibition of LE proliferation. Our results indicate that maximal inhibitory Dex effects on uterine LE proliferation require PR, possibly reflecting Dex crosstalk with PR. Inhibitory effects of Dex and P4 on LE proliferation may also involve GR binding, as indicated by the small but significant inhibition of LE proliferation by both Dex and P4 in PRKO mice.Item Structure-function analysis of CXXC finger protein 1(2010-01-26T20:05:07Z) Tate, Courtney Marie; Skalnik, David Gordon; Bigsby, Robert M.; Dynlacht, Joseph R.; Wek, Ronald C.This dissertation describes structure-function studies of CXXC finger protein 1 (Cfp1), encoded by the CXXC1 gene, in order to determine the functional significance of Cfp1 protein domains and properties. Cfp1 is an important regulator of chromatin structure and is essential for mammalian development. Murine embryonic stem (ES) cells lacking Cfp1 (CXXC1-/-) are viable but demonstrate a variety of defects, including hypersensitivity to DNA damaging agents, reduced plating efficiency and growth, decreased global and gene-specific cytosine methylation, failure to achieve in vitro differentiation, aberrant histone methylation, and subnuclear mis-localization of Setd1A, the catalytic component of a histone H3K4 methyltransferase complex, and tri-methylated histone H3K4 (H3K4me3) with regions of heterochromatin. Expression of wild-type Cfp1 in CXXC1-/- ES cells rescues the observed defects, thereby providing a convenient method to assess structure-function relationships of Cfp1. Cfp1 cDNA expression constructs were stably transfected into CXXC1-/- ES cells to evaluate the ability of various Cfp1 fragments and mutations to rescue the CXXC1-/- ES cell phenotype. These experiments revealed that expression of either the amino half of Cfp1 (amino acids 1-367) or the carboxyl half of Cfp1 (amino acids 361-656) is sufficient to rescue the hypersensitivity to DNA damaging agents, plating efficiency, cytosine and histone methylation, and differentiation defects. These results reveal that Cfp1 contains redundant functional domains for appropriate regulation of cytosine methylation, histone methylation, and in vitro differentiation. Additional studies revealed that a point mutation (C169A) that abolishes DNA-binding activity of Cfp1 ablates the rescue activity of the 1-367 fragment, and a point mutation (C375A) that abolishes the interaction of Cfp1 with the Setd1A and Setd1B histone H3K4 methyltransferase complexes ablates the rescue activity of the 361-656 Cfp1 fragment. In addition, introduction of both point mutations (C169A and C375A) ablates the rescue activity of the full-length Cfp1 protein. These results indicate that retention of either DNA-binding or Setd1 association of Cfp1 is required to rescue hypersensitivity to DNA damaging agents, plating efficiency, cytosine and histone methylation, and in vitro differentiation. In contrast, confocal immunofluorescence analysis revealed that full-length Cfp1 is required to restrict Setd1A and histone H3K4me3 to euchromatic regions.