- Browse by Author
Browsing by Author "Brickman, Adam M."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease(Elsevier, 2020) Dincer, Aylin; Gordon, Brian A.; Hari-Raj, Amrita; Keefe, Sarah J.; Flores, Shaney; McKay, Nicole S.; Paulick, Angela M.; Shady Lewis, Kristine E.; Feldman, Rebecca L.; Hornbeck, Russ C.; Allegri, Ricardo; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Brooks, William S.; Cash, David M.; Chhatwal, Jasmeer P.; Farlow, Martin R.; la Fougère, Christian; Fox, Nick C.; Fulham, Michael J.; Jack, Clifford R., Jr.; Joseph-Mathurin, Nelly; Karch, Celeste M.; Lee, Athene; Levin, Johannes; Masters, Colin L.; McDade, Eric M.; Oh, Hwamee; Perrin, Richard J.; Raji, Cyrus; Salloway, Stephen P.; Schofield, Peter R.; Su, Yi; Villemagne, Victor L.; Wang, Qing; Weiner, Michael W.; Xiong, Chengjie; Yakushev, Igor; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L.S.; Neurology, School of MedicineDefining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD.Item Longitudinal Accumulation of Cerebral Microhemorrhages in Dominantly Inherited Alzheimer Disease(American Academy of Neurology, 2021-03-23) Joseph-Mathurin, Nelly; Wang, Guoqiao; Kantarci, Kejal; Jack, Clifford R., Jr.; McDade, Eric; Hassenstab, Jason; Blazey, Tyler M.; Gordon, Brian A.; Su, Yi; Chen, Gengsheng; Massoumzadeh, Parinaz; Hornbeck, Russ C.; Allegri, Ricardo F.; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Brooks, William S.; Cash, David M.; Chhatwal, Jasmeer P.; Chui, Helena C.; Correia, Stephen; Cruchaga, Carlos; Farlow, Martin R.; Fox, Nick C.; Fulham, Michael; Ghetti, Bernardino; Graff-Radford, Neill R.; Johnson, Keith A.; Karch, Celeste M.; Laske, Christoph; Lee, Athene K.W.; Levin, Johannes; Masters, Colin L.; Noble, James M.; O’Connor, Antoinette; Perrin, Richard J.; Preboske, Gregory M.; Ringman, John M.; Rowe, Christopher C.; Salloway, Stephen; Saykin, Andrew J.; Schofield, Peter R.; Shimada, Hiroyuki; Shoji, Mikio; Suzuki, Kazushi; Villemagne, Victor L.; Xiong, Chengjie; Yakushev, Igor; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L.S.; Pathology and Laboratory Medicine, School of MedicineObjective: To investigate the inherent clinical risks associated with the presence of cerebral microhemorrhages (CMHs) or cerebral microbleeds and characterize individuals at high risk for developing hemorrhagic amyloid-related imaging abnormality (ARIA-H), we longitudinally evaluated families with dominantly inherited Alzheimer disease (DIAD). Methods: Mutation carriers (n = 310) and noncarriers (n = 201) underwent neuroimaging, including gradient echo MRI sequences to detect CMHs, and neuropsychological and clinical assessments. Cross-sectional and longitudinal analyses evaluated relationships between CMHs and neuroimaging and clinical markers of disease. Results: Three percent of noncarriers and 8% of carriers developed CMHs primarily located in lobar areas. Carriers with CMHs were older, had higher diastolic blood pressure and Hachinski ischemic scores, and more clinical, cognitive, and motor impairments than those without CMHs. APOE ε4 status was not associated with the prevalence or incidence of CMHs. Prevalent or incident CMHs predicted faster change in Clinical Dementia Rating although not composite cognitive measure, cortical thickness, hippocampal volume, or white matter lesions. Critically, the presence of 2 or more CMHs was associated with a significant risk for development of additional CMHs over time (8.95 ± 10.04 per year). Conclusion: Our study highlights factors associated with the development of CMHs in individuals with DIAD. CMHs are a part of the underlying disease process in DIAD and are significantly associated with dementia. This highlights that in participants in treatment trials exposed to drugs, which carry the risk of ARIA-H as a complication, it may be challenging to separate natural incidence of CMHs from drug-related CMHs.Item Novel genetic loci associated with hippocampal volume(SpringerNature, 2017-01-18) Hibar, Derrek P.; Adams, Hieab H.H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, Mallar; Chen, Qiang; Ching, Christopher R.K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C.M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M.; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J.; Van der Meer, Dennis; Van Donkelaar, Marjolein M. J.; Van Eijk, Kristel R.; Van Erp, Theo G.M.; Van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; De Craen, Anton J.M.; De Geus, Eco J.C.; De Jager, Philip L.; De Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H.H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Coon; Hoekstra, Pieter J.; Hoffman, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack Jr., Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Purohit, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Valdés Hernández, Maria C.; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; Van Haren, Neeltje E. M.; van't Ent, Dennis; Van Tol, Marie-Jose; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; Van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Arfan, M.; Department of Radiology and Imaging Sciences, IU School of MedicineThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg=-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.Item Partial Volume Correction in Quantitative Amyloid Imaging.(Elsevier, 2015-02-15) Su, Yi; Blazey, Tyler M.; Snyder, Abraham Z.; Raichle, Marcus E.; Marcus, Daniel S.; Ances, Beau M.; Bateman, Randall J.; Cairns, Nigel J.; Aldea, Patricia; Cash, Lisa; Christensen, Jon J.; Friedrichsen, Karl; Hornbeck, Russ C.; Farrar, Angela M.; Owen, Christopher J.; Mayeux, Richard; Brickman, Adam M.; Klunk, William; Price, Julie C.; Thompson, Paul M.; Ghetti, Bernardino; Saykin, Andrew J.; Sperling, Reisa A.; Johnson, Keith A.; Schofield, Peter R.; Buckles, Virginia; Morris, John C.; Benzinger, Tammie LS; Department of Pathology & Laboratory Medicine, IU School of MedicineAmyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition.Item Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study(Elsevier, 2018-01) Kinnunen, Kirsi M.; Cash, David M.; Poole, Teresa; Frost, Chris; Benzinger, Tammie L. S.; Ahsan, R. Laila; Leung, Kelvin K.; Cardoso, M. Jorge; Modat, Marc; Malone, Ian B.; Morris, John C.; Bateman, Randall J.; Marcus, Daniel S.; Goate, Alison; Salloway, Stephen P.; Correia, Stephen; Sperling, Reisa A.; Chhatwal, Jasmeer P.; Mayeux, Richard P.; Brickman, Adam M.; Martins, Ralph N.; Farlow, Martin R.; Ghetti, Bernardino; Saykin, Andrew J.; Jack, Clifford R.; Schofield, Peter R.; McDade, Eric; Weiner, Michael W.; Ringman, John M.; Thompson, Paul M.; Masters, Colin L.; Rowe, Christopher C.; Rossor, Martin N.; Ourselin, Sebastien; Fox, Nick C.; Neurology, School of MedicineINTRODUCTION: Identifying at what point atrophy rates first change in Alzheimer's disease is important for informing design of presymptomatic trials. METHODS: Serial T1-weighted magnetic resonance imaging scans of 94 participants (28 noncarriers, 66 carriers) from the Dominantly Inherited Alzheimer Network were used to measure brain, ventricular, and hippocampal atrophy rates. For each structure, nonlinear mixed-effects models estimated the change-points when atrophy rates deviate from normal and the rates of change before and after this point. RESULTS: Atrophy increased after the change-point, which occurred 1-1.5 years (assuming a single step change in atrophy rate) or 3-8 years (assuming gradual acceleration of atrophy) before expected symptom onset. At expected symptom onset, estimated atrophy rates were at least 3.6 times than those before the change-point. DISCUSSION: Atrophy rates are pathologically increased up to seven years before "expected onset". During this period, atrophy rates may be useful for inclusion and tracking of disease progression.Item Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV(Cambridge University Press, 2008-09) Paul, Robert H.; Ernst, Thomas; Brickman, Adam M.; Yiannoutsos, Constantin T.; Tate, David F.; Cohen, Ronald A.; Navia, Bradford A.; Biostatistics, School of Public HealthIn the present study, we examined the relationships among cognitive function, magnetic resonance spectroscopy (MRS) brain metabolite indices measured in the basal ganglia, and quantitative magnetic resonance imaging (MRI) of the caudate nucleus and the putamen in the earliest stages of HIV-related cognitive involvement. Participants included 22 HIV-positive individuals and 20 HIV-negative individuals. HIV-positive individuals performed significantly more poorly than the HIV-negative individuals on several cognitive measures. In addition, the choline/creatine ratio was significantly higher and the N-acetyl aspartate/choline ratio was significantly lower among HIV patients. The caudate and putamen sizes were smaller among HIV-positive patients compared with controls; however, the differences did not reach statistical significance. Correlation analyses revealed associations between cognitive function and select MRS indices. In addition, caudate size was significantly correlated with performances on higher-order thinking tests whereas putamen size was significantly correlated with performances on motor tests. The results suggest that MRS differences are more pronounced than area size differences between seropositive and seronegative individuals in mild stages of HIV-related cognitive impairment. However, basal ganglia size remains an important contributor to cognitive status in this population. Longitudinal studies are needed to determine the evolution of these imaging correlates of HIV-cognitive impairment in HIV.Item Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer's disease(Elsevier, 2020-08-01) Schultz, Stephanie A.; Strain, Jeremy F.; Adedokun, Adedamola; Wang, Qing; Preische, Oliver; Kuhle, Jens; Flores, Shaney; Keefe, Sarah; Dincer, Aylin; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Cash, David M.; Chhatwal, Jasmeer; Cruchaga, Carlos; Ewers, Michael; Fox, Nick N.; Ghetti, Bernardino; Goate, Alison; Graff-Radford, Neill R.; Hassenstab, Jason J.; Hornbeck, Russ; Jack, Clifford; Johnson, Keith; Joseph-Mathurin, Nelly; Karch, Celeste M.; Koeppe, Robert A.; Lee, Athene K. W.; Levin, Johannes; Masters, Colin; McDade, Eric; Perrin, Richard J.; Rowe, Christopher C.; Salloway, Stephen; Saykin, Andrew J.; Sperling, Reisa; Su, Yi; Villemagne, Victor L.; Vöglein, Jonathan; Weiner, Michael; Xiong, Chengjie; Fagan, Anne M.; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.; Jucker, Mathias; Gordon, Brian A.; Pathology and Laboratory Medicine, School of MedicineNeurofilament light chain (NfL) is a protein that is selectively expressed in neurons. Increased levels of NfL measured in either cerebrospinal fluid or blood is thought to be a biomarker of neuronal damage in neurodegenerative diseases. However, there have been limited investigations relating NfL to the concurrent measures of white matter (WM) decline that it should reflect. White matter damage is a common feature of Alzheimer's disease. We hypothesized that serum levels of NfL would associate with WM lesion volume and diffusion tensor imaging (DTI) metrics cross-sectionally in 117 autosomal dominant mutation carriers (MC) compared to 84 non-carrier (NC) familial controls as well as in a subset (N = 41) of MC with longitudinal NfL and MRI data. In MC, elevated cross-sectional NfL was positively associated with WM hyperintensity lesion volume, mean diffusivity, radial diffusivity, and axial diffusivity and negatively with fractional anisotropy. Greater change in NfL levels in MC was associated with larger changes in fractional anisotropy, mean diffusivity, and radial diffusivity, all indicative of reduced WM integrity. There were no relationships with NfL in NC. Our results demonstrate that blood-based NfL levels reflect WM integrity and supports the view that blood levels of NfL are predictive of WM damage in the brain. This is a critical result in improving the interpretability of NfL as a marker of brain integrity, and for validating this emerging biomarker for future use in clinical and research settings across multiple neurodegenerative diseases.Item Utility of perfusion PET measures to assess neuronal injury in Alzheimer's disease(Elsevier, 2018-09-27) Joseph-Mathurin, Nelly; Su, Yi; Blazey, Tyler M.; Jasielec, Mateusz; Vlassenko, Andrei; Friedrichsen, Karl; Gordon, Brian A.; Hornbeck, Russ C.; Cash, Lisa; Ances, Beau M.; Veale, Thomas; Cash, David M.; Brickman, Adam M.; Buckles, Virginia; Cairns, Nigel J.; Cruchaga, Carlos; Goate, Alison; Jack, Clifford R., Jr.; Karch, Celeste; Klunk, William; Koeppe, Robert A.; Marcus, Daniel S.; Mayeux, Richard; McDade, Eric; Noble, James M.; Ringman, John; Saykin, Andrew J.; Thompson, Paul M.; Xiong, Chengjie; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.; Dominantly Inherited Alzheimer Network; Radiology and Imaging Sciences, School of MedicineIntroduction: 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is commonly used to estimate neuronal injury in Alzheimer's disease (AD). Here, we evaluate the utility of dynamic PET measures of perfusion using 11C-Pittsburgh compound B (PiB) to estimate neuronal injury in comparison to FDG PET. Methods: FDG, early frames of PiB images, and relative PiB delivery rate constants (PiB-R1) were obtained from 110 participants from the Dominantly Inherited Alzheimer Network. Voxelwise, regional cross-sectional, and longitudinal analyses were done to evaluate the correlation between images and estimate the relationship of the imaging biomarkers with estimated time to disease progression based on family history. Results: Metabolism and perfusion images were spatially correlated. Regional PiB-R1 values and FDG, but not early frames of PiB images, significantly decreased in the mutation carriers with estimated year to onset and with increasing dementia severity. Discussion: Hypometabolism estimated by PiB-R1 may provide a measure of brain perfusion without increasing radiation exposure.Item White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer's disease(Public Library of Science, 2018-05-09) Lee, Seonjoo; Zimmerman, Molly E.; Narkhede, Atul; Nasrabady, Sara E.; Tosto, Giuseppe; Meier, Irene B.; Benzinger, Tammie L. S.; Marcus, Daniel S.; Fagan, Anne M.; Fox, Nick C.; Cairns, Nigel J.; Holtzman, David M.; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N.; Saykin, Andrew J.; Masters, Colin L.; Ringman, John M.; Fӧrster, Stefan; Schofield, Peter R.; Sperling, Reisa A. n; Johnson, Keith A. n; Chhatwal, Jasmeer P.; Salloway, Stephen; Correia, Stephen; Jack, Clifford R., Jr.; Weiner, Michael; Bateman, Randall J.; Morris, John C.; Mayeux, Richard; Brickman, Adam M.; Dominantly Inherited Alzheimer Network; Pathology and Laboratory Medicine, School of MedicineINTRODUCTION: White matter hyperintensity (WMH) volume on MRI is increased among presymptomatic individuals with autosomal dominant mutations for Alzheimer's disease (AD). One potential explanation is that WMH, conventionally considered a marker of cerebrovascular disease, are a reflection of cerebral amyloid angiopathy (CAA) and that increased WMH in this population is a manifestation of this vascular form of primary AD pathology. We examined whether the presence of cerebral microbleeds, a marker of CAA, mediates the relationship between WMH and estimated symptom onset in individuals with and without autosomal dominant mutations for AD. PARTICIPANTS AND METHODS: Participants (n = 175, mean age = 41.1 years) included 112 with an AD mutation and 63 first-degree non-carrier controls. We calculated the estimated years from expected symptom onset (EYO) and analyzed baseline MRI data for WMH volume and presence of cerebral microbleeds. Mixed effects regression and tests of mediation were used to examine microbleed and WMH differences between carriers and non-carriers and to test the whether the association between WMH and mutation status is dependent on the presence of microbleeds. RESULTS: Mutation carriers were more likely to have microbleeds than non-carriers (p<0.05) and individuals with microbleeds had higher WMH volume than those without (p<0.05). Total WMH volume was increased in mutation carriers compared with non-carriers, up to 20 years prior to EYO, after controlling for microbleed status, as we demonstrated previously. Formal testing of mediation demonstrated that 21% of the association between mutation status and WMH was mediated by presence of microbleeds (p = 0.03) but a significant direct effect of WMH remained (p = 0.02) after controlling for presence of microbleeds. DISCUSSION: Although there is some co-dependency between WMH and microbleeds, the observed increases in WMH among mutation carriers does not appear to be fully mediated by this marker of CAA. The findings highlight the possibility that WMH represent a core feature of AD independent of vascular forms of beta amyloid.Item White matter hyperintensities are a core feature of Alzheimer's disease: Evidence from the dominantly inherited Alzheimer network(Wiley, 2016-06) Lee, Seonjoo; Viqar, Fawad; Zimmerman, Molly E.; Narkhede, Atul; Tosto, Giuseppe; Benzinger, Tammie L.S.; Marcus, Daniel S.; Fagan, Anne M.; Goate, Alison; Fox, Nick C.; Cairns, Nigel J.; Holtzman, David M.; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N.; Saykin, Andrew J.; Masters, Colin L.; Ringman, John M.; Ryan, Natalie S.; Förster, Stefan; Laske, Christoph; Schofield, Peter R.; Sperling, Reisa A.; Salloway, Stephen; Correia, Stephen; Jack, Clifford; Weiner, Michael; Bateman, Randall J.; Morris, John C.; Mayeux, Richard; Brickman, Adam M.; Dominantly Inherited Alzheimer Network; Department of Pathology and Laboratory Medicine, School of MedicineWhite matter hyperintensities (WMHs) are areas of increased signal on T2-weighted magnetic resonance imaging (MRI) scans that most commonly reflect small vessel cerebrovascular disease. Increased WMH volume is associated with risk and progression of Alzheimer's disease (AD). These observations are typically interpreted as evidence that vascular abnormalities play an additive, independent role contributing to symptom presentation, but not core features of AD. We examined the severity and distribution of WMH in presymptomatic PSEN1, PSEN2, and APP mutation carriers to determine the extent to which WMH manifest in individuals genetically determined to develop AD.