- Browse by Author
Browsing by Author "Chopra, Gaurav"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Inhibition of 12/15-Lipoxygenase Protects Against β-Cell Oxidative Stress and Glycemic Deterioration in Mouse Models of Type 1 Diabetes(American Diabetes Association, 2017-11) Hernandez-Perez, Marimar; Chopra, Gaurav; Fine, Jonathan; Conteh, Abass M.; Anderson, Ryan M.; Linnemann, Amelia K.; Benjamin, Chanelle; Nelson, Jennifer B.; Benninger, Kara S.; Nadler, Jerry L.; Maloney, David J.; Tersey, Sarah A.; Mirmira, Raghavendra G.; Pediatrics, School of MedicineIslet β-cell dysfunction and aggressive macrophage activity are early features in the pathogenesis of type 1 diabetes (T1D). 12/15-Lipoxygenase (12/15-LOX) is induced in β-cells and macrophages during T1D and produces proinflammatory lipids and lipid peroxides that exacerbate β-cell dysfunction and macrophage activity. Inhibition of 12/15-LOX provides a potential therapeutic approach to prevent glycemic deterioration in T1D. Two inhibitors recently identified by our groups through screening efforts, ML127 and ML351, have been shown to selectively target 12/15-LOX with high potency. Only ML351 exhibited no apparent toxicity across a range of concentrations in mouse islets, and molecular modeling has suggested reduced promiscuity of ML351 compared with ML127. In mouse islets, incubation with ML351 improved glucose-stimulated insulin secretion in the presence of proinflammatory cytokines and triggered gene expression pathways responsive to oxidative stress and cell death. Consistent with a role for 12/15-LOX in promoting oxidative stress, its chemical inhibition reduced production of reactive oxygen species in both mouse and human islets in vitro. In a streptozotocin-induced model of T1D in mice, ML351 prevented the development of diabetes, with coincident enhancement of nuclear Nrf2 in islet cells, reduced β-cell oxidative stress, and preservation of β-cell mass. In the nonobese diabetic mouse model of T1D, administration of ML351 during the prediabetic phase prevented dysglycemia, reduced β-cell oxidative stress, and increased the proportion of anti-inflammatory macrophages in insulitis. The data provide the first evidence to date that small molecules that target 12/15-LOX can prevent progression of β-cell dysfunction and glycemic deterioration in models of T1D.Item Targeting polyamine biosynthesis to stimulate beta cell regeneration in zebrafish(Taylor & Francis, 2020-07-25) Robertson, Morgan A.; Padgett, Leah R.; Fine, Jonathan A.; Chopra, Gaurav; Mastracci, Teresa L.; Biology, School of ScienceType 1 diabetes (T1D) is a disease characterized by destruction of the insulin-producing beta cells. Currently, there remains a critical gap in our understanding of how to reverse or prevent beta cell loss in individuals with T1D. Previous studies in mice discovered that pharmacologically inhibiting polyamine biosynthesis using difluoromethylornithine (DFMO) resulted in preserved beta cell function and mass. Similarly, treatment of non-obese diabetic mice with the tyrosine kinase inhibitor Imatinib mesylate reversed diabetes. The promising findings from these animal studies resulted in the initiation of two separate clinical trials that would repurpose either DFMO (NCT02384889) or Imatinib (NCT01781975) and determine effects on diabetes outcomes; however, whether these drugs directly stimulated beta cell growth remained unknown. To address this, we used the zebrafish model system to determine pharmacological impact on beta cell regeneration. After induction of beta cell death, zebrafish embryos were treated with either DFMO or Imatinib. Neither drug altered whole-body growth or exocrine pancreas length. Embryos treated with Imatinib showed no effect on beta cell regeneration; however, excitingly, DFMO enhanced beta cell regeneration. These data suggest that pharmacological inhibition of polyamine biosynthesis may be a promising therapeutic option to stimulate beta cell regeneration in the setting of diabetes.