- Browse by Author
Browsing by Author "Considine, Robert V."
Now showing 1 - 10 of 43
Results Per Page
Sort Options
Item Acute Changes in Sleep Duration on Eating Behaviors and Appetite-Regulating Hormones in Overweight/Obese Adults(Taylor & Francis, 2015) Hart, Chantelle N.; Carskadon, Mary A.; Demos, Kathryn E.; Van Reen, Eliza; Sharkey, Katherine M.; Raynor, Hollie A.; Considine, Robert V.; Jones, Richard N.; Wing, Rena R.; Department of Medicine, IU School of MedicineThere is considerable interest in the role of sleep in weight regulation, yet few studies have examined this relationship in overweight/obese (OW/OB) adults. Using a within-subject, counterbalanced design, 12 OW/OB women were studied in lab with two nights of short (5 hr time in bed [TIB]) and two nights of long (9 hr TIB) sleep. Hunger, consumption at a buffet, and fasting hormone levels were obtained. Significant polysomnographic differences occurred between conditions in total sleep time and sleep architecture (ps < .001). Percent energy from protein at the buffet increased following short sleep. No differences were observed for total energy intake or measured hormones. Further research is needed to determine how lengthening sleep impacts weight regulation in OW/OB adults.Item Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity(American Diabetes Association, 2013-11) Carobbio, Stefania; Hagen, Rachel M.; Lelliott, Christopher J.; Slawik, Marc; Medina-Gomez, Gema; Tan, Chong-Yew; Sicard, Audrey; Atherton, Helen J.; Barbarroja, Nuria; Bjursell, Mikael; Bohlooly-Y, Mohammad; Virtue, Sam; Tuthill, Antoinette; Lefai, Etienne; Laville, Martine; Wu, Tingting; Considine, Robert V.; Vidal, Hubert; Langin, Dominique; Oresic, Matej; Tinahones, Francisco J.; Manuel Fernandez-Real, Jose; Griffin, Julian L.; Sethi, Jaswinder K.; López, Miguel; Vidal-Puig, Antonio; Medicine, School of MedicineThe epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and insulin-resistant states. In our experiments, we show that Insig1 mRNA expression decreases in WAT from mice with obesity-associated insulin resistance and from morbidly obese humans and in in vitro models of adipocyte insulin resistance. Insig1 downregulation is part of an adaptive response that promotes the maintenance of SREBP1 maturation and facilitates lipogenesis and availability of appropriate levels of fatty acid unsaturation, partially compensating the antilipogenic effect associated with insulin resistance. We describe for the first time the existence of this adaptive mechanism in WAT, which involves Insig1/SREBP1 and preserves the degree of lipid unsaturation under conditions of obesity-induced insulin resistance. These adaptive mechanisms contribute to maintain lipid desaturation through preferential SCD1 regulation and facilitate fat storage in WAT, despite on-going metabolic stress.Item Adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism(Elsevier, 2016-04) Ziegler, Kathryn M.; Considine, Robert V.; True, Eben; Swartz-Basile, Deborah A.; Pitt, Henry A.; Zyromski, Nicholas J.; Department of Surgery, IU School of MedicineINTRODUCTION: Obesity accelerates the development and progression of pancreatic cancer, though the mechanisms underlying this association are unclear. Adipocytes are biologically active, producing factors such as hepatocyte growth factor (HGF) that may influence tumor progression. We therefore sought to test the hypothesis that adipocyte-secreted factors including HGF accelerate pancreatic cancer cell proliferation. MATERIAL AND METHODS: Murine pancreatic cancer cells (Pan02 and TGP-47) were grown in a) conditioned medium (CM) from murine F442A preadipocytes, b) HGF-knockdown preadipocyte CM, c) recombinant murine HGF at increasing doses, and d) CM plus HGF-receptor (c-met) inhibitor. Cell proliferation was measured using the MTT assay. ANOVA and t-test were applied; p < 0.05 considered significant. RESULTS: Wild-type preadipocyte CM accelerated Pan02 and TGP-47 cell proliferation relative to control (59 ± 12% and 34 ± 12%, p < 0.01, respectively). Knockdown of preadipocyte HGF resulted in attenuated proliferation vs. wild type CM in Pan02 cells (35 ± 5% vs. 68 ± 14% greater than control; p < 0.05), but proliferation in TGP-47 cells remained unchanged. Recombinant HGF dose-dependently increased Pan02, but not TGP-47, proliferation (p < 0.05). Inhibition of HGF receptor, c-met, resulted in attenuated proliferation versus control in Pan02 cells, but not TGP-47 cells. CONCLUSIONS: These experiments demonstrate that adipocyte-derived factors accelerate murine pancreatic cancer proliferation. In the case of Pan02 cells, HGF is responsible, in part, for this proliferation.Item The apéritif effect: Alcohol's effects on the brain's response to food aromas in women(Wiley Blackwell (John Wiley & Sons), 2015-07) Eiler, William J. A.; Džemidžić, Mario; Case, K. Rose; Soeurt, Christina M.; Armstrong, Cheryl L. H.; Mattes, Richard D.; O'Connor, Sean J.; Harezlak, Jaroslaw; Acton, Anthony J.; Considine, Robert V.; Kareken, David A.; Department of Neurology, IU School of MedicineOBJECTIVE: Consuming alcohol prior to a meal (an apéritif) increases food consumption. This greater food consumption may result from increased activity in brain regions that mediate reward and regulate feeding behavior. Using functional magnetic resonance imaging, we evaluated the blood oxygenation level dependent (BOLD) response to the food aromas of either roast beef or Italian meat sauce following pharmacokinetically controlled intravenous infusion of alcohol. METHODS: BOLD activation to food aromas in non-obese women (n = 35) was evaluated once during intravenous infusion of 6% v/v EtOH, clamped at a steady-state breath alcohol concentration of 50 mg%, and once during infusion of saline using matching pump rates. Ad libitum intake of roast beef with noodles or Italian meat sauce with pasta following imaging was recorded. RESULTS: BOLD activation to food relative to non-food odors in the hypothalamic area was increased during alcohol pre-load when compared to saline. Food consumption was significantly greater, and levels of ghrelin were reduced, following alcohol. CONCLUSIONS: An alcohol pre-load increased food consumption and potentiated differences between food and non-food BOLD responses in the region of the hypothalamus. The hypothalamus may mediate the interplay of alcohol and responses to food cues, thus playing a role in the apéritif phenomenon.Item Combination GLP-1 and Insulin Treatment Fails to Alter Myocardial Fuel Selection Versus Insulin Alone in Type 2 Diabetes(Oxford, 2018-07) Mather, Kieren J.; Considine, Robert V.; Hamilton, LaTonya; Patel, Niral A.; Mathias, Carla; Territo, Wendy; Goodwill, Adam; Tune, Johnathan D.; Green, Mark A.; Hutchins, Gary D.; Medicine, School of MedicineContext Glucagon-like peptide-1 (GLP-1) and the clinically available GLP-1 agonists have been shown to exert effects on the heart. It is unclear whether these effects occur at clinically used doses in vivo in humans, possibly contributing to CVD risk reduction. Objective To determine whether liraglutide at clinical dosing augments myocardial glucose uptake alone or in combination with insulin compared to insulin alone in metformin-treated Type 2 diabetes mellitus. Design Comparison of myocardial fuel utilization after 3 months of treatment with insulin detemir, liraglutide, or combination detemir+liraglutide. Setting Academic hospital Participants Type 2 diabetes treated with metformin plus oral agents or basal insulin. Interventions Insulin detemir, liraglutide, or combination added to background metformin Main Outcome Measures Myocardial blood flow, fuel selection and rates of fuel utilization evaluated using positron emission tomography, powered to demonstrate large effects. Results We observed greater myocardial blood flow in the insulin-treated groups (median[25th, 75th percentile]: detemir 0.64[0.50, 0.69], liraglutide 0.52[0.46, 0.58] and detemir+liraglutide 0.75[0.55, 0.77] mL/g/min, p=0.035 comparing 3 groups and p=0.01 comparing detemir groups to liraglutide alone). There were no evident differences between groups in myocardial glucose uptake (detemir 0.040[0.013, 0.049], liraglutide 0.055[0.019, 0.105], detemir+liraglutide 0.037[0.009, 0.046] µmol/g/min, p=0.68 comparing 3 groups). Similarly there were no treatment group differences in measures of myocardial fatty acid uptake or handling, and no differences in total oxidation rate. Conclusions These observations argue against large effects of GLP-1 agonists on myocardial fuel metabolism as mediators of beneficial treatment effects on myocardial function and ischemia protection.Item Comparison of β-Cell Function Between Overweight/Obese Adults and Adolescents Across the Spectrum of Glycemia(American Diabetes Association, 2018-02) Chen, Melinda E.; Chandramouli, Aaditya G.; Considine, Robert V.; Hannon, Tamara S.; Mather, Kieren J.; Pediatrics, School of MedicineOBJECTIVE: Type 2 diabetes is a growing health problem among both adults and adolescents. To better understand the differences in the pathogenesis of diabetes between these groups, we examined differences in β-cell function along the spectrum of glucose tolerance. RESEARCH DESIGN AND METHODS: We evaluated 89 adults and 50 adolescents with normal glucose tolerance (NGT), dysglycemia, or type 2 diabetes. Oral glucose tolerance test results were used for C-peptide and insulin/glucose minimal modeling. Model-derived and direct measures of insulin secretion and insulin sensitivity were compared across glycemic stages and between age-groups at each stage. RESULTS: In adolescents with dysglycemia, there was marked insulin resistance (insulin sensitivity index: adolescents, median [interquartile range] 1.8 [1.1-2.4] × 10-4; adults, 5.0 [2.3-9.9]; P = 0.01). The nature of β-cell dysfunction across stages of dysglycemia differed between the groups. We observed higher levels of secretion among adolescents than adults (total insulin secretion: NGT, 143 [103-284] × 10-9/min adolescent vs. 106 [71-127], P = 0.001); adults showed stepwise impairments in static insulin secretion (NGT, 7.5 [4.0-10.3] × 10-9/min; dysglycemia, 5.0 [2.3-9.9]; type 2 diabetes, 0.7 [0.1-2.45]; P = 0.003), whereas adolescents showed diabetes-related impairment in dynamic secretion (NGT, 1,905 [1,630-3,913] × 10-9; dysglycemia, 2,703 [1,323-3,637]; type 2 diabetes, 1,189 [269-1,410]; P = 0.001). CONCLUSIONS: Adults and adolescents differ in the underlying defects leading to dysglycemia, and in the nature of β-cell dysfunction across stages of dysglycemia. These results may suggest different approaches to diabetes prevention in youths versus adults.Item Contribution of Perivascular Adipose Tissue to Coronary Vascular Dysfunction(2011-03-10) Payne, Gregory Allen; Tune, Johnathan D.; Bohlen, H. Glenn; Considine, Robert V.; Sturek, Michael StephenThe epidemic of obesity and associated cardiovascular complications continues to grow at an alarming rate. Currently, obesity is thought to initiate a state of chronic inflammation, which if unresolved potentially causes cardiovascular dysfunction and disease. Although poorly understood, release of inflammatory mediators and other cytokines from adipose tissue (adipocytokines) has been proposed to be the molecular link between obesity and coronary artery disease. Furthermore, the anatomic location of adipose has been increasingly recognized as a potential contributor to vascular disease. Importantly, the development of coronary atherosclerosis, a key component of heart disease, is typically found in segments of coronary arteries surrounded by perivascular adipose tissue. Accordingly, the goal of this project was to determine how perivascular adipose tissue affects coronary artery function and elucidate the critical mechanisms involved. Initial studies assessing arterial function were conducted with and without perivascular adipose tissue. Preliminary results demonstrated that factors released by perivascular adipose tissue effectively impaired coronary endothelial function both in vitro and in vivo. This observation was determined to be caused by direct inhibition of nitric oxide synthase (NOS), a critical enzyme for the production nitric oxide. Attenuation of endothelium-dependent vasodilation was independent of changes in superoxide production, smooth muscle response, or peroxide-mediated vasodilation. Additional studies revealed that perivascular adipose-induced impairment of NOS was due to increased inhibitory regulation by the β isoform of protein kinase C (PKC-β). Specifically, perivascular adipose-derived factors caused site specific phosphorylation of nitric oxide synthase at Thr-495. Additional experiments investigated how perivascular adipose-derived factors contributed to coronary artery disease in an animal model of obesity. Results from these studies indicated that perivascular adipose-derived leptin markedly exacerbated underlying endothelial dysfunction, and significantly contributed to coronary endothelial dysfunction through a PKC-β dependent mechanism. Findings from this project confirm epicardial perivascular adipose tissue as a local source of harmful adipocytokines. In addition, perivascular adipose-derived leptin was demonstrated to be a critical mediator of coronary vascular dysfunction in obesity. Together, the results strongly suggest that perivascular adipose tissue is a key contributor to coronary artery disease in obesity.Item Correlation between Ventromedial Prefrontal Cortex Activation to Food Aromas and Cue-driven Eating: An fMRI Study(Springer-Verlag, 2012-03) Eiler, William J. A. II; Dzemidzic, Mario; Case, K. Rose; Considine, Robert V.; Kareken, David A.; Department of Neurology, IU School of MedicineFood aromas are signals associated with both food's availability and pleasure. Previous research from this laboratory has shown that food aromas under fasting conditions evoke robust activation of medial prefrontal brain regions thought to reflect reward value (Bragulat, et al. 2010). In the current study, eighteen women (eleven normal-weight and seven obese) underwent a two-day imaging study (one after being fed, one while fasting). All were imaged on a 3T Siemens Trio-Tim scanner while sniffing two food (F; pasta and beef) odors, one non-food (NF; Douglas fir) odor, and an odorless control (CO). Prior to imaging, participants rated hunger and perceived odor qualities, and completed the Dutch Eating Behavior Questionnaire (DEBQ) to assess “Externality” (the extent to which eating is driven by external food cues). Across all participants, both food and non-food odors (compared to CO) elicited large blood oxygenation level dependent (BOLD) responses in olfactory and reward-related areas, including the medial prefrontal and anterior cingulate cortex, bilateral orbitofrontal cortex, and bilateral piriform cortex, amygdala, and hippocampus. However, food odors produced greater activation of medial prefrontal cortex, left lateral orbitofrontal cortex and inferior insula than non-food odors. Moreover, there was a significant correlation between the [F > CO] BOLD response in ventromedial prefrontal cortex and “Externality” sub-scale scores of the DEBQ, but only under the fed condition; no such correlation was present with the [NF > CO] response. This suggests that in those with high Externality, ventromedial prefrontal cortex may inappropriately valuate external food cues in the absence of internal hunger.Item Diet-induced dyslipidemia drives store-operated Ca2+ entry, Ca2+ dysregulation, non-alcoholic steatohepatitis, and coronary atherogenesis in metabolic syndrome(2010-07-21T20:06:24Z) Neeb, Zachary P.; Sturek, Michael Stephen; Breall, Jeffrey A.; Considine, Robert V.; Obukhov, Alexander; Tune, Johnathan D.Risk of coronary artery disease (CAD), the leading cause of death, greatly increases in metabolic syndrome. Metabolic syndrome (MetS; obesity, insulin resistance, glucose intolerance, dyslipidemia, and hypertension) is increasing in prevalence with sedentary lifestyles and poor nutrition. Non-alcoholic steatohepatitis (NASH; i.e. MetS liver) is progressive and decreases life expectancy, with CAD as the leading cause of death. Pathogenic Ca2+ regulation transforms coronary artery smooth muscle from a healthy, quiescent state to a diseased, proliferative phenotype thus majorly contributing to the development of CAD. In particular, store-operated Ca2+ entry (SOCE) in vascular smooth muscle is associated with atherosclerosis. Genetic predisposition may render individuals more susceptible to Ca2+ dysregulation, CAD, NASH, and MetS. However, the metabolic and cellular mechanisms underlying these disease states are poorly understood. Accordingly, the goal of this dissertation was to investigate the role of dyslipidemia within MetS in the development of Ca2+ dysregulation, CAD, and NASH. The overarching hypothesis was that dyslipidemia within MetS would be necessary for induction of NASH and increased SOCE that would primarily mediate development of CAD. To test this hypothesis we utilized the Ossabaw miniature swine model of MetS. Swine were fed one of five diets for different lengths of time to induce varying severity of MetS. Lean swine were fed normal maintenance chow diet. F/MetS swine were fed high Fructose (20% kcal) diet that induced normolipidemic MetS. TMetS were fed excess high Trans-fat/cholesterol atherogenic diet that induced mildly dyslipidemic MetS and CAD. XMetS were TMetS swine with eXercise. DMetS (TMetS + high fructose) were moderately dyslipidemic and developed MetS and extensive CAD. sDMetS (Short-term DMetS) developed MetS with mild dyslipidemia, but no CAD. MMetS (Mixed-source-fat/cholesterol/fructose) were severely dyslipidemic, exhibited NASH, and developed severe CAD. Dyslipidemia in MetS predicted NASH severity (all groups < DMetS << MMetS), CAD severity (i.e. Lean, F/MetS, sDMetS < XMetS < TMetS < DMetS < MMetS), and was necessary for STIM1/TRPC1-mediated SOCE, which preceded CAD. Exercise ameliorated SOCE and CAD compared to TMetS. In conclusion, dyslipidemia elicits TRPC1/STIM1 SOCE that mediates CAD, is necessary for and predictive of NASH and CAD, and whose affects are attenuated by exercise.Item Differentiation and contractility of colon smooth muscle under normal and diabetic conditions(2013-10-07) Touw, Ketrija; Herring, B. Paul; Gallagher, Patricia J.; Rhodes, Simon J.; Considine, Robert V.Intestinal smooth muscle development involves complex transcriptional regulation leading to cell differentiation of the circular, longitudinal and muscularis mucosae layers. Differentiated intestinal smooth muscle cells express high levels of smooth muscle-specific contractile and regulatory proteins, including telokin. Telokin is regulatory protein that is highly expressed in visceral smooth muscle. Analysis of cis-elements required for transcriptional regulation of the telokin promoter by using hypoxanthine-guanine phosphoribosyltransferase (Hprt)-targeted reporter transgenes revealed that a 10 base pair large CC(AT)₆GG ciselement, called CArG box is required for promoter activity in all tissues. We also determined that an additional 100 base pair region is necessary for transgene activity in intestinal smooth muscle cells. To examine how transcriptional regulation of intestinal smooth muscle may be altered under pathological conditions we examined the effects of diabetes on colonic smooth muscle. Approximately 76% of diabetic patients develop gastrointestinal (GI) symptoms such as constipation due to intestinal dysmotility. Mice were treated with low-dose streptozotocin to induce a type 1 diabetes-like hyperglycemia. CT scans revealed decreased overall GI tract motility after 7 weeks of hyperglycemia. Acute (1 week) and chronic (7 weeks) diabetic mice also had decreased potassium chloride (KCl)-induced colon smooth muscle contractility. We hypothesized that decreased smooth muscle contractility at least in part, was due to alteration of contractile protein gene expression. However, diabetic mice showed no changes in mRNA or protein levels of smooth muscle contractile proteins. We determined that the decreased colonic contractility was associated with an attenuated intracellular calcium increase, as measured by ratio-metric imaging of Fura-2 fluorescence in isolated colonic smooth muscle strips. This attenuated calcium increase resulted in decreased myosin light chain phosphorylation, thus explaining the decreased contractility of the colon. Chronic diabetes was also associated with increased basal calcium levels. Western blotting and quantitative real time polymerase chain reaction (qRT-PCR) analysis revealed significant changes in calcium handling proteins in chronic diabetes that were not seen in the acute state.These changes most likely reflect compensatory mechanisms activated by the initial impaired calcium response. Overall my results suggest that type 1 diabetes in mice leads to decreased colon motility in part due to altered calcium handling without altering contractile protein expression.