- Browse by Author
Browsing by Author "Davies, Stella M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Clinical features and outcomes of patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: a multicentre, retrospective, cohort study(Elsevier, 2020-03) Myers, Kasiani C.; Furutani, Elissa; Weller, Edie; Siegele, Bradford; Galvin, Ashley; Arsenault, Valerie; Alter, Blanche P.; Boulad, Farid; Bueso-Ramos, Carlos; Burroughs, Lauri; Castillo, Paul; Connelly, James; Davies, Stella M.; DiNardo, Courtney D.; Hanif, Iftikhar; Ho, Richard H.; Karras, Nicole; Manalang, Michelle; McReynolds, Lisa J.; Nakano, Taizo A.; Nalepa, Grzegorz; Norkin, Maxim; Oberley, Matthew J.; Orgel, Etan; Pastore, Yves D.; Rosenthal, Joseph; Walkovich, Kelly; Larson, Jordan; Malsch, Maggie; Elghetany, M. Tarek; Fleming, Mark D.; Shimamura, Akiko; Pediatrics, School of MedicineBackground: Data to inform surveillance and treatment for leukaemia predisposition syndromes are scarce and recommendations are largely based on expert opinion. This study aimed to investigate the clinical features and outcomes of patients with myelodysplastic syndrome or acute myeloid leukaemia and Shwachman-Diamond syndrome, an inherited bone marrow failure disorder with high risk of developing myeloid malignancies. Methods: We did a multicentre, retrospective, cohort study in collaboration with the North American Shwachman-Diamond Syndrome Registry. We reviewed patient medical records from 17 centres in the USA and Canada. Patients with a genetic (biallelic mutations in the SBDS gene) or clinical diagnosis (cytopenias and pancreatic dysfunction) of Shwachman-Diamond syndrome who developed myelodysplastic syndrome or acute myeloid leukaemia were eligible without additional restriction. Medical records were reviewed between March 1, 2001, and Oct 5, 2017. Masked central review of bone marrow pathology was done if available to confirm leukaemia or myelodysplastic syndrome diagnosis. We describe the clinical features and overall survival of these patients. Findings: We initially identified 37 patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia. 27 patients had samples available for central pathology review and were reclassified accordingly (central diagnosis concurred with local in 15 [56%] cases), 10 had no samples available and were classified based on the local review data, and 1 patient was excluded at this stage as not eligible. 36 patients were included in the analysis, of whom 10 (28%) initially presented with acute myeloid leukaemia and 26 (72%) initially presented with myelodysplastic syndrome. With a median follow-up of 4·9 years (IQR 3·9-8·4), median overall survival for patients with myelodysplastic syndrome was 7·7 years (95% CI 0·8-not reached) and 0·99 years (95% CI 0·2-2·4) for patients with acute myeloid leukaemia. Overall survival at 3 years was 11% (95% CI 1-39) for patients with leukaemia and 51% (29-68) for patients with myelodysplastic syndrome. Management and surveillance were variable. 18 (69%) of 26 patients with myelodysplastic syndrome received upfront therapy (14 haematopoietic stem cell transplantation and 4 chemotherapy), 4 (15%) patients received no treatment, 2 (8%) had unavailable data, and 2 (8%) progressed to acute myeloid leukaemia before receiving treatment. 12 patients received treatment for acute myeloid leukaemia-including the two patients initially diagnosed with myelodysplastic who progressed- two (16%) received HSCT as initial therapy and ten (83%) received chemotherapy with intent to proceed with HSCT. 33 (92%) of 36 patients (eight of ten with leukaemia and 25 of 26 with myelodysplastic syndrome) were known to have Shwachman-Diamond syndrome before development of a myeloid malignancy and could have been monitored with bone marrow surveillance. Bone marrow surveillance before myeloid malignancy diagnosis was done in three (33%) of nine patients with leukaemia for whom surveillance status was confirmed and 11 (46%) of 24 patients with myelodysplastic syndrome. Patients monitored had a 3-year overall survival of 62% (95% CI 32-82; n=14) compared with 28% (95% CI 10-50; n=19; p=0·13) without surveillance. Six (40%) of 15 patients with available longitudinal data developed myelodysplastic syndrome in the setting of stable blood counts. Interpretation: Our results suggest that prognosis is poor for patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia owing to both therapy-resistant disease and treatment-related toxicities. Improved surveillance algorithms and risk stratification tools, studies of clonal evolution, and prospective trials are needed to inform effective prevention and treatment strategies for leukaemia predisposition in patients with Shwachman-Diamond syndrome.Item Human Papillomavirus Oral- and Sero- Positivity in Fanconi Anemia(MDPI, 2021-03-18) Sauter, Sharon L.; Zhang, Xue; Romick-Rosendale, Lindsey; Wells, Susanne I.; Myers, Kasiani C.; Brusadelli, Marion G.; Poff, Charles B.; Brown, Darron R.; Panicker, Gitika; Unger, Elizabeth R.; Mehta, Parinda A.; Bleesing, Jack; Davies, Stella M.; Butsch Kovacic, Melinda; Medicine, School of MedicineHigh-risk human papillomavirus (HPV) is prevalent and known to cause 5% of all cancers worldwide. The rare, cancer prone Fanconi anemia (FA) population is characterized by a predisposition to both head and neck squamous cell carcinomas and gynecological cancers, but the role of HPV in these cancers remains unclear. Prompted by a patient-family advocacy organization, oral HPV and HPV serological studies were simultaneously undertaken. Oral DNA samples from 201 individuals with FA, 303 unaffected family members, and 107 unrelated controls were tested for 37 HPV types. Serum samples from 115 individuals with FA and 55 unrelated controls were tested for antibodies against 9 HPV types. Oral HPV prevalence was higher for individuals with FA (20%) versus their parents (13%; p = 0.07), siblings (8%, p = 0.01), and unrelated controls (6%, p ≤ 0.001). A FA diagnosis increased HPV positivity 4.84-fold (95% CI: 1.96-11.93) in adjusted models compared to unrelated controls. Common risk factors associated with HPV in the general population did not predict oral positivity in FA, unlike unrelated controls. Seropositivity and anti-HPV titers did not significantly differ in FA versus unrelated controls regardless of HPV vaccination status. We conclude that individuals with FA are uniquely susceptible to oral HPV independent of conventional risk factors.Item Oral human papillomavirus is common in individuals with Fanconi anemia(American Association for Cancer Research, 2015-05) Sauter, Sharon L.; Wells, Susanne I.; Zhang, Xue; Hoskins, Elizabeth E.; Davies, Stella M.; Myers, Kasiani C.; Mueller, Robin; Panicker, Gitika; Unger, Elizabeth R.; Sivaprasad, Umasundari; Brown, Darron R.; Mehta, Parinda A.; Kovacic, Melinda Butsch; Department of Microbiology & Immunology, IU School of MedicineFanconi anemia is a rare genetic disorder resulting in a loss of function of the Fanconi anemia-related DNA repair pathway. Individuals with Fanconi anemia are predisposed to some cancers, including oropharyngeal and gynecologic cancers, with known associations with human papillomavirus (HPV) in the general population. As individuals with Fanconi anemia respond poorly to chemotherapy and radiation, prevention of cancer is critical. METHODS: To determine whether individuals with Fanconi anemia are particularly susceptible to oral HPV infection, we analyzed survey-based risk factor data and tested DNA isolated from oral rinses from 126 individuals with Fanconi anemia and 162 unaffected first-degree family members for 37 HPV types. RESULTS: Fourteen individuals (11.1%) with Fanconi anemia tested positive, significantly more (P = 0.003) than family members (2.5%). While HPV prevalence was even higher for sexually active individuals with Fanconi anemia (17.7% vs. 2.4% in family; P = 0.003), HPV positivity also tended to be higher in the sexually inactive (8.7% in Fanconi anemia vs. 2.9% in siblings). Indeed, having Fanconi anemia increased HPV positivity 4.9-fold (95% CI, 1.6-15.4) considering age and sexual experience, but did not differ by other potential risk factors. CONCLUSION: Our studies suggest that oral HPV is more common in individuals with Fanconi anemia. It will be essential to continue to explore associations between risk factors and immune dysfunction on HPV incidence and persistence over time. IMPACT: HPV vaccination should be emphasized in those with Fanconi anemia as a first step to prevent oropharyngeal cancers, although additional studies are needed to determine whether the level of protection it offers in this population is adequate.