- Browse by Author
Browsing by Author "Dong, Zizheng"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item 14-3-3σ Contributes to Radioresistance by Regulating DNA Repair and Cell Cycle via PARP1 and CHK2(AACR, 2017) Chen, Yifan; Li, Zhaomin; Dong, Zizheng; Beebe, Jenny; Yang, Ke; Fu, Liwu; Zhang, Jian-Ting; Department of Pharmacology and Toxicology, IU School of Medicine14-3-3σ has been implicated in the development of chemo and radiation resistance and in poor prognosis of multiple human cancers. While it has been postulated that 14-3-3σ contributes to these resistances via inhibiting apoptosis and arresting cells in G2–M phase of the cell cycle, the molecular basis of this regulation is currently unknown. In this study, we tested the hypothesis that 14-3-3σ causes resistance to DNA-damaging treatments by enhancing DNA repair in cells arrested in G2–M phase following DNA-damaging treatments. We showed that 14-3-3σ contributed to ionizing radiation (IR) resistance by arresting cancer cells in G2–M phase following IR and by increasing non-homologous end joining (NHEJ) repair of the IR-induced DNA double strand breaks (DSB). The increased NHEJ repair activity was due to 14-3-3σ–mediated upregulation of PARP1 expression that promoted the recruitment of DNA-PKcs to the DNA damage sites for repair of DSBs. On the other hand, the increased G2–M arrest following IR was due to 14-3-3σ–induced Chk2 expression. Implications: These findings reveal an important molecular basis of 14-3-3σ function in cancer cell resistance to chemo/radiation therapy and in poor prognosis of human cancers.Item 14-3-3σ regulation of and interaction with YAP1 in acquired gemcitabine resistance via promoting ribonucleotide reductase expression(Impact Journals, LLC, 2016-04-05) Qin, Li; Dong, Zizheng; Zhang, Jian-Ting; Department of Pharmacology and Toxicology, IU School of MedicineGemcitabine is an important anticancer therapeutics approved for treatment of several human cancers including locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). Its clinical effectiveness, however, is hindered by existence of intrinsic and development of acquired resistances. Previously, it was found that 14-3-3σ expression associates with poor clinical outcome of PDAC patients. It was also found that 14-3-3σ expression is up-regulated in gemcitabine resistant PDAC cells and contributes to the acquired gemcitabine resistance. In this study, we investigated the molecular mechanism of 14-3-3σ function in gemcitabine resistance and found that 14-3-3σ up-regulates YAP1 expression and then binds to YAP1 to inhibit gemcitabine-induced caspase 8 activation and apoptosis. 14-3-3σ association with YAP1 up-regulates the expression of ribonucleotide reductase M1 and M2, which may mediate 14-3-3σ/YAP1 function in the acquired gemcitabine resistance. These findings suggest a possible role of YAP1 signaling in gemcitabine resistance.Item Corrigendum: eIF3a Regulation of NHEJ Repair Protein Synthesis and Cellular Response to Ionizing Radiation(Frontiers Media, 2021-01-07) Tumia, Rima; Wang, Chao J.; Dong, Tianhan; Ma, Shijie; Beebe, Jenny; Chen, Juan; Dong, Zizheng; Liu, Jing-Yuan; Zhang, Jian-Ting; Pharmacology and Toxicology, School of Medicine[This corrects the article DOI: 10.3389/fcell.2020.00753.].Item Dynamic vs Static ABCG2 Inhibitors to Sensitize Drug Resistant Cancer Cells(Public Library of Science, 2010-12-07) Peng, Hui; Qi, Jing; Dong, Zizheng; Zhang, Jian-Ting; Pharmacology and Toxicology, School of MedicineHuman ABCG2, a member of the ATP-binding cassette transporter superfamily, plays a key role in multidrug resistance and protecting cancer stem cells. ABCG2-knockout had no apparent adverse effect on the development, biochemistry, and life of mice. Thus, ABCG2 is an interesting and promising target for development of chemo-sensitizing agents for better treatment of drug resistant cancers and for eliminating cancer stem cells. Previously, we reported a novel two mode-acting ABCG2 inhibitor, PZ-39, that induces ABCG2 degradation in addition to inhibiting its activity. In this manuscript, we report our recent progresses in identifying two different groups of ABCG2 inhibitors with one inhibiting only ABCG2 function (static) and the other induces ABCG2 degradation in lysosome in addition to inhibiting its function (dynamic). Thus, the inhibitor-induced ABCG2 degradation may be more common than we previously anticipated and further investigation of the dynamic inhibitors that induce ABCG2 degradation may provide a more effective way of sensitizing ABCG2-mediated MDR in cancer chemotherapy.Item Effective targeting of the survivin dimerization interface with small molecule inhibitors(AACR, 2016-01) Qi, Jing; Dong, Zizheng; Liu, Jianguo; Peery, Robert C.; Zhang, Shaobo; Liu, Jingyuan; Zhang, Jian-Ting; Department of Pathology and Laboratory Medicine, IU School of MedicineMany oncoproteins are considered undruggable because they lack enzymatic activities. In this study, we present a small-molecule–based anticancer agent that acts by inhibiting dimerization of the oncoprotein survivin, thereby promoting its degradation along with spontaneous apoptosis in cancer cells. Through a combination of computational analysis of the dimerization interface and in silico screening, we identified one compound that induced proteasome-dependent survivin degradation. Analysis of a set of structural analogues led us to identify a lead compound (LQZ-7F), which was effective in blocking the survival of multiple cancer cell lines in a low micromolar concentration range. LQZ-7F induced proteasome-dependent survivin degradation, mitotic arrest, and apoptosis, and it blocked the growth of human tumors in mouse xenograft assays. In addition to providing preclinical proof of concept for a survivin-targeting anticancer agent, our work offers novel in silico screening strategies to therapeutically target homodimeric oncogenic proteins considered undruggable.Item eIF3a Regulation of NHEJ Repair Protein Synthesis and Cellular Response to Ionizing Radiation(Frontiers, 2020-08-19) Tumia, Rima; Wang, Chao J.; Dong, Tianhan; Ma, Shijie; Beebe, Jenny; Chen, Juan; Dong, Zizheng; Liu, Jing-Yuan; Zhang, Jian-Ting; Pharmacology and Toxicology, School of MedicineTranslation initiation in protein synthesis regulated by eukaryotic initiation factors (eIFs) is a crucial step in controlling gene expression. eIF3a has been shown to regulate protein synthesis and cellular response to treatments by anticancer agents including cisplatin by regulating nucleotide excision repair. In this study, we tested the hypothesis that eIF3a regulates the synthesis of proteins important for the repair of double-strand DNA breaks induced by ionizing radiation (IR). We found that eIF3a upregulation sensitized cellular response to IR while its downregulation caused resistance to IR. eIF3a increases IR-induced DNA damages and decreases non-homologous end joining (NHEJ) activity by suppressing the synthesis of NHEJ repair proteins. Furthermore, analysis of existing patient database shows that eIF3a expression associates with better overall survival of breast, gastric, lung, and ovarian cancer patients. These findings together suggest that eIF3a plays an important role in cellular response to DNA-damaging treatments by regulating the synthesis of DNA repair proteins and, thus, eIIF3a likely contributes to the outcome of cancer patients treated with DNA-damaging strategies including IR.Item EIF3i Promotes Colon Oncogenesis by Regulating COX-2 Protein Synthesis and β-Catenin Activation(Nature Publishing Group, 2014-08-07) Qi, Jing; Dong, Zizheng; Liu, Jianguo; Zhang, Jian-Ting; Department of Pharmacology and Toxicology, IU School of MedicineTranslational control of gene expression has recently been recognized as an important mechanism controlling cell proliferation and oncogenesis and it mainly occurs in the initiation step of protein synthesis that involves multiple eukaryotic initiation factors (eIFs). Many eIFs have been found to have aberrant expression in human tumors and the aberrant expression may contribute to oncogenesis. However, how these previously considered house-keeping proteins are potentially oncogenic remains elusive. In this study, we investigated the expression of eIF3i in human colon cancers, tested its contribution to colon oncogenesis, and determined the mechanism of eIF3i action in colon oncogenesis. We found that eIF3i expression was up-regulated in both human colon adenocarcinoma and adenoma polyps as well as in model inducible colon tumorigenic cell lines. Over-expression of ectopic eIF3i in intestinal epithelial cells causes oncogenesis by directly up-regulating synthesis of COX-2 protein and activates the β-catenin/TCF4 signaling pathway that mediates the oncogenic function of eIF3i. Together, we conclude that eIF3i is a proto-oncogene that drives colon oncogenesis by translationally up-regulating COX-2 and activating β-catenin signaling pathway. These findings imply that protooncogenic eIFs likely exert their tumorigenic function by regulating/altering the synthesis level of down-stream tumor suppressor or oncogenes.Item FASN regulates cellular response to genotoxic treatments by increasing PARP-1 expression and DNA repair activity via NF-κB and SP1(National Academy of Sciences, 2016-10-24) Wu, Xi; Dong, Zizheng; Wang, Chao J.; Barlow, Lincoln James; Fako, Valerie; Serrano, Moises A.; Zou, Yue; Liu, Jing-Yuan; Zhang, Jian-Ting; Department of Pharmacology and Toxicology, School of MedicineFatty acid synthase (FASN), the sole cytosolic mammalian enzyme for de novo lipid synthesis, is crucial for cancer cell survival and associates with poor prognosis. FASN overexpression has been found to cause resistance to genotoxic insults. Here we tested the hypothesis that FASN regulates DNA repair to facilitate survival against genotoxic insults and found that FASN suppresses NF-κB but increases specificity protein 1 (SP1) expression. NF-κB and SP1 bind to a composite element in the poly(ADP-ribose) polymerase 1 (PARP-1) promoter in a mutually exclusive manner and regulate PARP-1 expression. Up-regulation of PARP-1 by FASN in turn increases Ku protein recruitment and DNA repair. Furthermore, lipid deprivation suppresses SP1 expression, which is able to be rescued by palmitate supplementation. However, lipid deprivation or palmitate supplementation has no effect on NF-κB expression. Thus, FASN may regulate NF-κB and SP1 expression using different mechanisms. Altogether, we conclude that FASN regulates cellular response against genotoxic insults by up-regulating PARP-1 and DNA repair via NF-κB and SP1.Item Novel synthetic bisindolylmaleimide alkaloids inhibit STAT3 activation by binding to the SH2 domain and suppress breast xenograft tumor growth(Springer Nature, 2018-05) Li, Xia; Ma, Hongguang; Li, Lin; Chen, Yifan; Sun, Xiao; Dong, Zizheng; Liu, Jing-Yuan; Zhu, Weiming; Zhang, Jiang-Ting; Pharmacology and Toxicology, School of MedicineSignal transducer and activator of transcription 3 (STAT3) is constitutively activated in malignant tumors and plays important roles in multiple aspects of cancer aggressiveness. Thus, targeting STAT3 promises to be an attractive strategy for the treatment of advanced metastatic tumors. Bisindolylmaleimide alkaloid (BMA) has been shown to have anti-cancer activities and was thought to suppress tumor cell growth by inhibiting protein kinase C. In this study, we show that a newly synthesized BMA analog, BMA097, is effective in suppressing tumor cell and xenograft growth and in inducing spontaneous apoptosis. We also provide evidence that BMA097 binds directly to the SH2 domain of STAT3 and inhibits STAT3 phosphorylation and activation, leading to reduced expression of STAT3 downstream target genes. Structure activity relationship analysis revealed that the hydroxymethyl group in the 2,5-dihydropyrrole-2,5-dione prohibits STAT3 inhibitory activity of BMA analogs. Altogether, we conclude that the synthetic BMA analogs may be developed as anti-cancer drugs by targeting and binding to the SH2 domain of STAT3 and inhibiting the STAT3 signaling pathway.Item Regulation of expression by promoters versus internal ribosome entry site in the 5′-untranslated sequence of the human cyclin-dependent kinase inhibitor p27(Oxford University Press, 2005-07-01) Liu, Zhaoqian; Dong, Zizheng; Han, Baoguang; Yang, Youyun; Liu, Yang; Zhang, Jian-Ting; Pharmacology and Toxicology, School of Medicinep27 kip1 regulates cell proliferation by binding to and inhibiting the activity of cyclin-dependent kinases and its expression oscillates with cell cycle. Recently, it has been suggested from studies using the traditional dicistronic DNA assay that the expression of p27 kip1 is regulated by internal ribosome entry site (IRES)-mediated translation initiation, and several RNA-binding protein factors were thought to play some role in this regulation. Considering the inevitable drawbacks of the dicistronic DNA assay, which could mislead a promoter activity or alternative splicing to IRES as previously demonstrated, we decided to reanalyze the 5′-untranslated region (5′-UTR) sequence of p27 kip1 and test whether it contains an IRES element or a promoter using more stringent methods, such as dicistronic RNA and promoterless dicistronic and monocistronic DNA assays. We found that the 5′-UTR sequence of human p27 kip1 does not have any significant IRES activity. The previously observed IRES activities are likely generated from the promoter activities present in the 5′-UTR sequences of p27 kip1 . The findings in this study indicate that transcriptional regulation likely plays an important role in p27 kip1 expression, and the mechanism of regulation of p27 expression by RNA-binding factors needs to be re-examined. The findings in this study also further enforce the importance that more stringent studies, such as promoterless dicistronic and monocistronic DNA and dicistronic RNA tests, are required to safeguard any future claims of cellular IRES.