- Browse by Author
Browsing by Author "Goergen, Craig J."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Assessing breast tumor margin by multispectral photoacoustic tomography(Optical Society of America, 2015-03-12) Li, Rui; Wang, Pu; Lan, Lu; Lloyd Jr., Frank P.; Goergen, Craig J.; Chen, Shaoxiong; Cheng, Ji-Xin; Department of Pathology and Laboratory Medicine, IU School of MedicineAn unmet need exists in high-speed and highly-sensitive intraoperative assessment of breast cancer margin during conservation surgical procedures. Here, we demonstrate a multispectral photoacoustic tomography system for breast tumor margin assessment using fat and hemoglobin as contrasts. This system provides ~3 mm tissue depth and ~125 μm axial resolution. The results agreed with the histological findings. A high sensitivity in margin assessment was accomplished, which opens a compelling way to intraoperative margin assessment.Item Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves(Elsevier, 2016-03) Hui, Jie; Li, Rui; Phillips, Evan H.; Goergen, Craig J.; Sturek, Michael; Cheng, Ji-Xin; Department of Cellular & Integrative Physiology, IU School of MedicineThe quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology.Item Development of a Glycosaminoglycan Derived, Selectin Targeting Anti-Adhesive Coating to Treat Endothelial Cell Dysfunction(MDPI, 2017-03-29) Wodicka, James R.; Chambers, Andrea M.; Sangha, Gurneet S.; Goergen, Craig J.; Panitch, Alyssa; Medicine, School of MedicineEndothelial cell (EC) dysfunction is associated with many disease states including deep vein thrombosis (DVT), chronic kidney disease, sepsis and diabetes. Loss of the glycocalyx, a thin glycosaminoglycan (GAG)-rich layer on the EC surface, is a key feature of endothelial dysfunction and increases exposure of EC adhesion molecules such as selectins, which are involved in platelet binding to ECs. Once bound, platelets cause thrombus formation and an increased inflammatory response. We have developed a GAG derived, selectin targeting anti-adhesive coating (termed EC-SEAL) consisting of a dermatan sulfate backbone and multiple selectin-binding peptides designed to bind to inflamed endothelium and prevent platelet binding to create a more quiescent endothelial state. Multiple EC-SEAL variants were evaluated and the lead variant was found to preferentially bind to selectin-expressing ECs and smooth muscle cells (SMCs) and inhibit platelet binding and activation in a dose-dependent manner. In an in vivo model of DVT, treatment with the lead variant resulted in reduced thrombus formation. These results indicate that EC-SEAL has promise as a potential therapeutic in the treatment of endothelial dysfunction.Item Murine Ultrasound-Guided Transabdominal Para-Aortic Injections of Self-Assembling Type I Collagen Oligomers(Elsevier, 2017-03-10) Yrineo, Alexa A.; Adelsperger, Amelia R.; Durkes, Abigail C.; Distasi, Matthew R.; Voytik-Harbin, Sherry L.; Murphy, Michael P.; Goergen, Craig J.; Surgery, School of MedicineAbdominal aortic aneurysms (AAAs) represent a potentially life-threatening condition that predominantly affects the infrarenal aorta. Several preclinical murine models that mimic the human condition have been developed and are now widely used to investigate AAA pathogenesis. Cell- or pharmaceutical-based therapeutics designed to prevent AAA expansion are currently being evaluated with these animal models, but more minimally invasive strategies for delivery could improve their clinical translation. The purpose of this study was to investigate the use of self-assembling type I collagen oligomers as an injectable therapeutic delivery vehicle in mice. Here we show the success and reliability of a para-aortic, ultrasound-guided technique for injecting quickly-polymerizing collagen oligomer solutions into mice to form a collagen-fibril matrix at body temperature. A commonly used infrarenal mouse AAA model was used to determine the target location of these collagen injections. Ultrasound-guided, closed-abdominal injections supported consistent delivery of collagen to the area surrounding the infrarenal abdominal aorta halfway between the right renal artery and aortic trifurcation into the iliac and tail arteries. This minimally invasive approach yielded outcomes similar to open-abdominal injections into the same region. Histological analysis on tissue removed on day 14 post-operatively showed minimal in vivo degradation of the self-assembled fibrillar collagen and the majority of implants experienced minimal inflammation and cell invasion, further confirming this material's potential as a method for delivering therapeutics. Finally, we showed that the typical length and position of this infrarenal AAA model was statistically similar to the length and targeted location of the injected collagen, increasing its feasibility as a localized therapeutic delivery vehicle. Future preclinical and clinical studies are needed to determine if specific therapeutics incorporated into the self-assembling type I collagen matrix described here can be delivered near the aorta and locally limit AAA expansion.,Item Regenerative tissue filler for breast conserving surgery and other soft tissue restoration and reconstruction needs(Springer Nature, 2021-02-01) Puls, Theodore J.; Fisher, Carla S.; Cox, Abigail; Plantenga, Jeannie M.; McBride, Emma L.; Anderson, Jennifer L.; Goergen, Craig J.; Bible, Melissa; Moller, Tracy; Voytik‑Harbin, Sherry L.; Surgery, School of MedicineComplete removal of cancerous tissue and preservation of breast cosmesis with a single breast conserving surgery (BCS) is essential for surgeons. New and better options would allow them to more consistently achieve this goal and expand the number of women that receive this preferred therapy, while minimizing the need for re-excision and revision procedures or more aggressive surgical approaches (i.e., mastectomy). We have developed and evaluated a regenerative tissue filler that is applied as a liquid to defects during BCS prior to transitioning to a fibrillar collagen scaffold with soft tissue consistency. Using a porcine simulated BCS model, the collagen filler was shown to induce a regenerative healing response, characterized by rapid cellularization, vascularization, and progressive breast tissue neogenesis, including adipose tissue and mammary glands and ducts. Unlike conventional biomaterials, no foreign body response or inflammatory-mediated “active” biodegradation was observed. The collagen filler also did not compromise simulated surgical re-excision, radiography, or ultrasonography procedures, features that are important for clinical translation. When post-BCS radiation was applied, the collagen filler and its associated tissue response were largely similar to non-irradiated conditions; however, as expected, healing was modestly slower. This in situ scaffold-forming collagen is easy to apply, conforms to patient-specific defects, and regenerates complex soft tissues in the absence of inflammation. It has significant translational potential as the first regenerative tissue filler for BCS as well as other soft tissue restoration and reconstruction needs.Item Toward Automation of the Supine Pressor Test for Preeclampsia(American Society of Mechanical Enginners, 2019-11) Qureshi, Hamna J.; Ma, Jessica L.; Anderson, Jennifer L.; Bosinski, Brett M.; Acharya, Aditi; Bennett, Rachel D.; Haas, David M.; Cox, Abigail D.; Wodicka, George R.; Reuter, David G.; Goergen, Craig J.; Medicine, School of MedicinePreeclampsia leads to increased risk of morbidity and mortality for both mother and fetus. Most previous studies have largely neglected mechanical compression of the left renal vein by the gravid uterus as a potential mechanism. In this study, we first used a murine model to investigate the pathophysiology of left renal vein constriction. The results indicate that prolonged renal vein stenosis after 14 days can cause renal necrosis and an increase in blood pressure (BP) of roughly 30 mmHg. The second part of this study aimed to automate a diagnostic tool, known as the supine pressor test (SPT), to enable pregnant women to assess their preeclampsia development risk. A positive SPT has been previously defined as an increase of at least 20 mmHg in diastolic BP when switching between left lateral recumbent and supine positions. The results from this study established a baseline BP increase between the two body positions in nonpregnant women and demonstrated the feasibility of an autonomous SPT in pregnant women. Our results demonstrate that there is a baseline increase in BP of roughly 10-14 mmHg and that pregnant women can autonomously perform the SPT. Overall, this work in both rodents and humans suggests that (1) stenosis of the left renal vein in mice leads to elevation in BP and acute renal failure, (2) nonpregnant women experience a baseline increase in BP when they shift from left lateral recumbent to supine position, and (3) the SPT can be automated and used autonomously.