- Browse by Author
Browsing by Author "Hallett, Mark A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis(2011-01) Li, Deqiang; Hallett, Mark A.; Zhu, Wuqiang; Rubart, Michael; Liu, Ying; Yang, Zhenyun; Chen, Hanying; Haneline, Laura S.; Chan, Rebecca J.; Schwartz, Robert J.; Field, Loren J.; Atkinson, Simon J.; Shou, WeinianDishevelled-associated activator of morphogenesis 1 (Daam1), a member of the formin protein family, plays an important role in regulating the actin cytoskeleton via mediation of linear actin assembly. Previous functional studies of Daam1 in lower species suggest its essential role in Drosophila trachea formation and Xenopus gastrulation. However, its in vivo physiological function in mammalian systems is largely unknown. We have generated Daam1-deficient mice via gene-trap technology and found that Daam1 is highly expressed in developing murine organs, including the heart. Daam1-deficient mice exhibit embryonic and neonatal lethality and suffer multiple cardiac defects, including ventricular noncompaction, double outlet right ventricles and ventricular septal defects. In vivo genetic rescue experiments further confirm that the lethality of Daam1-deficient mice results from the inherent cardiac abnormalities. In-depth analyses have revealed that Daam1 is important for regulating filamentous actin assembly and organization, and consequently for cytoskeletal function in cardiomyocytes, which contributes to proper heart morphogenesis. Daam1 is also found to be important for proper cytoskeletal architecture and functionalities in embryonic fibroblasts. Biochemical analyses indicate that Daam1 does not regulate cytoskeletal organization through RhoA, Rac1 or Cdc42. Our study highlights a crucial role for Daam1 in regulating the actin cytoskeleton and tissue morphogenesis.Item Probing the importance and potential roles of the binding of the PH-domain protein Boi1 to acidic phospholipids(BioMed Central, 2007-06-27) Hallett, Mark A.; Lo, H. Shuen; Bender, Alan; Medicine, School of MedicineBackground The related proteins Boi1 and Boi2, which appear to promote polarized growth in S. cerevisiae, both contain a PH (pleckstrin homology) and an SH3 (src homology 3) domain. Previously, we gained evidence that a PH domain-bearing segment of Boi1, which we call Boi1-PH, is sufficient and necessary for function. In the current study, we investigate the binding of Boi1's PH domain to the acidic phospholipids PIP2 (phosphatidylinositol-4,5-bisphosphate) and PS (phosphatidylserine). Results Boi1-PH co-sediments with PS vesicles. It does so more readily when these vesicles contain a small amount of PIP2. Boi1-PH is degraded in yeast extracts in a manner that is stimulated by PIP2. Amino-acid substitutions that diminish binding to PIP2 and PS impair Boi1 function. Fusion to a myristoyl group-accepting sequence improves to different degrees the ability of these different mutant versions of Boi1-PH to function. Boi1 and Boi2 are localized to the periphery of buds during much of the budding cycle and to necks late in the cell cycle. Amino-acid substitutions that diminish binding to PIP2 and PS impair localization of Boi1 to the bud, but do not affect the localization of Boi1 to the neck. Conversely, a mutation in the SH3 domain prevents the localization of Boi1 to the neck, but does not impair localization to the bud. Conclusions Boi1's PH domain binds to acidic phospholipids, and this binding appears to be important for Boi1 function. The main role of binding to PS may simply be to promote the association of the PH domain with membrane. The higher-affinity binding to PIP2, which apparently promotes a conformational change in the PH domain, may play an important additional role. Boi1 and Boi2 are localized to sites of polarized growth. Whereas the SH3 domain is needed for localization of Boi1 to the neck, the phospholipid-binding portion of the PH domain is important for localization to the bud.