- Browse by Author
Browsing by Author "He, Xiaoming"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Adaptive Kriging Method for Uncertainty Quantification of the Photoelectron Sheath and Dust Levitation on the Lunar Surface(ASME, 2021) Wei, Xinpeng; Zhao, Jianxun; He, Xiaoming; Hu, Zhen; Du, Xiaoping; Han, Daoru; Mechanical and Energy Engineering, School of Engineering and TechnologyThis paper presents an adaptive Kriging based method to perform uncertainty quantification (UQ) of the photoelectron sheath and dust levitation on the lunar surface. The objective of this study is to identify the upper and lower bounds of the electric potential and that of dust levitation height, given the intervals of model parameters in the one-dimensional (1D) photoelectron sheath model. To improve the calculation efficiency, we employ the widely used adaptive Kriging method (AKM). A task-oriented learning function and a stopping criterion are developed to train the Kriging model and customize the AKM. Experiment analysis shows that the proposed AKM is both accurate and efficient.Item Bioinspired One Cell Culture Isolates Highly Tumorigenic and Metastatic Cancer Stem Cells Capable of Multilineage Differentiation(Wiley, 2020-04-28) Wang, Hai; Agarwal, Pranay; Jiang, Bin; Stewart, Samantha; Liu, Xuanyou; Liang, Yutong; Hancioglu, Baris; Webb, Amy; Fisher, John P.; Liu, Zhenguo; Lu, Xiongbin; Tkaczuk, Katherine H. R.; He, Xiaoming; Medical and Molecular Genetics, School of MedicineItem Carbon nano-onion-mediated dual targeting of P-selectin and P-glycoprotein to overcome cancer drug resistance(Springer Nature, 2021-01-12) Wang, Hai; Liang, Yutong; Yin, Yue; Zhang, Jie; Su, Wen; White, Alisa M.; Jiang, Bin; Xu, Jiangsheng; Zhang, Yuntian; Stewart, Samantha; Lu, Xiaongbin; He, Xiaoming; Medical and Molecular Genetics, School of MedicineThe transmembrane P-glycoprotein (P-gp) pumps that efflux drugs are a major mechanism of cancer drug resistance. They are also important in protecting normal tissue cells from poisonous xenobiotics and endogenous metabolites. Here, we report a fucoidan-decorated silica-carbon nano-onion (FSCNO) hybrid nanoparticle that targets tumor vasculature to specifically release P-gp inhibitor and anticancer drug into tumor cells. The tumor vasculature targeting capability of the nanoparticle is demonstrated using multiple models. Moreover, we reveal the superior light absorption property of nano-onion in the near infrared region (NIR), which enables triggered drug release from the nanoparticle at a low NIR power. The released inhibitor selectively binds to P-gp pumps and disables their function, which improves the bioavailability of anticancer drug inside the cells. Furthermore, free P-gp inhibitor significantly increases the systemic toxicity of a chemotherapy drug, which can be resolved by delivering them with FSCNO nanoparticles in combination with a short low-power NIR laser irradiation.Item Creating a capture zone in microfluidic flow greatly enhances the throughput and efficiency of cancer detection(Elsevier, 2019-03) Sun, Mingrui; Xu, Jiangsheng; Shamul, James G.; Lu, Xiongbin; Husain, Syed; He, Xiaoming; Medical and Molecular Genetics, School of MedicineEfficient capture of rare circulating tumor cells (CTCs) from blood samples is valuable for early cancer detection to improve the management of cancer. In this work, we developed a highly efficient microfluidics-based method for detecting CTCs in human blood. This is achieved by creating separate capture and flow zones in the microfluidic device (ZonesChip) and using patterned dielectrophoretic force to direct cells from the flow zone into the capture zone. This separation of the capture and flow zones minimizes the negative impact of high flow speed (and thus high throughput) and force in the flow zone on the capture efficiency, overcoming a major bottleneck of contemporary microfluidic approaches using overlapping flow and capture zones for CTC detection. When the flow speed is high (≥0.58 mm/s) in the flow zone, the separation of capture and flow zones in our ZonesChip could improve the capture efficiency from ∼0% (for conventional device without separating the two zones) to ∼100%. Our ZonesChip shows great promise as an effective platform for the detection of CTCs in blood from patients with early/localized-stage colorectal tumors.Item Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform(Elsevier, 2018-10) Wang, Hai; Agarwal, Pranay; Liang, Yutong; Xu, Jiangsheng; Zhao, Gang; Tkaczuk, Katherine H. R.; Lu, Xiongbin; He, Xiaoming; Medical and Molecular Genetics, School of MedicineStimuli-responsive nanoparticles hold great promise for drug delivery to improve the safety and efficacy of cancer therapy. One of the most investigated stimuli-responsive strategies is to induce drug release by heating with laser, ultrasound, or electromagnetic field. More recently, cryosurgery (also called cryotherapy and cryoablation), destruction of diseased tissues by first cooling/freezing and then warming back, has been used to treat various diseases including cancer in the clinic. Here we developed a cold-responsive nanoparticle for controlled drug release as a result of the irreversible disassembly of the nanoparticle when cooled to below ∼10 °C. Furthermore, this nanoparticle can be used to generate localized heating under near infrared (NIR) laser irradiation, which can facilitate the warming process after cooling/freezing during cryosurgery. Indeed, the combination of this cold-responsive nanoparticle with ice cooling and NIR laser irradiation can greatly augment cancer destruction both in vitro and in vivo with no evident systemic toxicity.Item Heterozygous deletion of chromosome 17p renders prostate cancer vulnerable to inhibition of RNA polymerase II(Springer Nature, 2018-10-22) Li, Yujing; Liu, Yunhua; Xu, Hanchen; Jiang, Guanglong; Van der Jeught, Kevin; Fang, Yuanzhang; Zhou, Zhuolong; Zhang, Lu; Frieden, Michael; Wang, Lifei; Luo, Zhenhua; Radovich, Milan; Schneider, Bryan P.; Deng, Yibin; Liu, Yunlong; Huang, Kun; He, Bin; Wang, Jin; He, Xiaoming; Zhang, Xinna; Ji, Guang; Lu, Xiongbin; Medical and Molecular Genetics, School of MedicineHeterozygous deletion of chromosome 17p (17p) is one of the most frequent genomic events in human cancers. Beyond the tumor suppressor TP53, the POLR2A gene encoding the catalytic subunit of RNA polymerase II (RNAP2) is also included in a ~20-megabase deletion region of 17p in 63% of metastatic castration-resistant prostate cancer (CRPC). Using a focused CRISPR-Cas9 screen, we discovered that heterozygous loss of 17p confers a selective dependence of CRPC cells on the ubiquitin E3 ligase Ring-Box 1 (RBX1). RBX1 activates POLR2A by the K63-linked ubiquitination and thus elevates the RNAP2-mediated mRNA synthesis. Combined inhibition of RNAP2 and RBX1 profoundly suppress the growth of CRPC in a synergistic manner, which potentiates the therapeutic effectivity of the RNAP2 inhibitor, α-amanitin-based antibody drug conjugate (ADC). Given the limited therapeutic options for CRPC, our findings identify RBX1 as a potentially therapeutic target for treating human CRPC harboring heterozygous deletion of 17p.Item Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial(American Chemical Society, 2018-05-23) Wang, Hai; Agarwal, Pranay; Zhao, Gang; Ji, Guang; Jewell, Christopher M.; Fisher, John P.; Lu, Xiongbin; He, Xiaoming; Medical and Molecular Genetics, School of MedicineDrug resistance due to overexpression of membrane transporters in cancer cells and the existence of cancer stem cells (CSCs) is a major hurdle to effective and safe cancer chemotherapy. Nanoparticles have been explored to overcome cancer drug resistance. However, drug slowly released from nanoparticles can still be efficiently pumped out of drug-resistant cells. Here, a hybrid nanoparticle of phospholipid and polymers is developed to achieve cold-triggered burst release of encapsulated drug. With ice cooling to below ∼12 °C for both burst drug release and reduced membrane transporter activity, binding of the drug with its target in drug-resistant cells is evident, while it is minimal in the cells kept at 37 °C. Moreover, targeted drug delivery with the cold-responsive nanoparticles in combination with ice cooling not only can effectively kill drug-resistant ovarian cancer cells and their CSCs in vitro but also destroy both subcutaneous and orthotopic ovarian tumors in vivo with no evident systemic toxicity.Item Photoelectron Sheath near the Lunar Surface: Fully Kinetic Modeling and Uncertainty Quantification Analysis(American Institute of Aeronautics and Astronautics, 2020-01-05) Zhao, Jianxun; Wei, Xinpeng; Hu, Zhangli; He, Xiaoming; Han, Daoru; Hu, Zhen; Du, Xiaoping; Mechanical and Energy Engineering, School of Engineering and TechnologyThis paper considers plasma charging on the lunar surface with a focus on photoelectron sheath. The plasma species includes ambient solar wind (protons and electrons) and photoelectrons emitted from the illuminated lunar surface. This work is motivated by the high computational cost associated with uncertainty quantification (UQ) analysis of plasma simulations using high-fidelity fully kinetic models. In this paper, we study the photoelectron sheath near the lunar surface with a focus on effects of variables of uncertainty (such as the ambient electron density or photoelectron temperature) on the plasma environment. A fully kinetic 3-D finite-difference (FD) particle-in-cell (PIC) code is utilized to simulate the plasma interaction near the lunar surface and the resulting photoelectron sheath. For the uncertainty quantification analysis, this PIC code is treated as a black box providing high-fidelity quantities of interest, which are also used to construct efficient reduced-order models to perform UQ analysis. A 1-D configuration is first studied to demonstrate the procedure and capability of the UQ analysis. The rest of the paper is organized as follows. Section III presents the analytic and numerical solutions of the 1-D photoelectron sheath. Verification and validation of the FD-PIC code for photoelectron sheath solution is shown. Section IV describes the Kriging model and the uncertainty quantification approach. Section V discusses the UQ analysis of the 1-D photoelectron sheath. The conclusion is given in Section VI.Item Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer(Springer Nature, 2019-04) Xu, Jiangsheng; Liu, Yunhua; Li, Yujing; Wang, Hai; Stewart, Samantha; Van der Jeught, Kevin; Agarwal, Pranay; Zhang, Yuntian; Liu, Sheng; Zhao, Gang; Wan, Jun; Lu, Xiongbin; He, Xiaoming; Medical and Molecular Genetics, School of MedicineTP53 is the most frequently mutated or deleted gene in triple negative breast cancer (TNBC). Both the loss of TP53 and the lack of targeted therapy are significantly correlated with poor clinical outcomes, making TNBC the only type of breast cancer that has no approved targeted therapies. Through in silico analysis, we identified POLR2A in the TP53-neighbouring region as a collateral vulnerability target in TNBC tumours, suggesting that its inhibition via small interfering RNA (siRNA) may be an amenable approach for TNBC targeted treatment. To enhance bioavailability and improve endo/lysosomal escape of siRNA, we designed pH-activated nanoparticles for augmented cytosolic delivery of POLR2A siRNA (siPol2). Suppression of POLR2A expression with the siPol2-laden nanoparticles leads to enhanced growth reduction of tumours characterized by hemizygous POLR2A loss. These results demonstrate the potential of the pH-responsive nanoparticle and the precise POLR2A targeted therapy in TNBC harbouring the common TP53 genomic alteration.Item Somatic mutation of the cohesin complex subunit confers therapeutic vulnerabilities in cancer(American Society for Clinical Investigation, 2018-07-02) Liu, Yunhua; Xu, Hanchen; Van der Jeught, Kevin; Li, Yujing; Liu, Sheng; Zhang, Lu; Fang, Yuanzhang; Zhang, Xinna; Radovich, Milan; Schneider, Bryan P.; He, Xiaoming; Huang, Cheng; Zhang, Chi; Wan, Jun; Ji, Guang; Lu, Xiongbin; Surgery, School of MedicineA synthetic lethality-based strategy has been developed to identify therapeutic targets in cancer harboring tumor-suppressor gene mutations, as exemplified by the effectiveness of poly ADP-ribose polymerase (PARP) inhibitors in BRCA1/2-mutated tumors. However, many synthetic lethal interactors are less reliable due to the fact that such genes usually do not perform fundamental or indispensable functions in the cell. Here, we developed an approach to identifying the "essential lethality" arising from these mutated/deleted essential genes, which are largely tolerated in cancer cells due to genetic redundancy. We uncovered the cohesion subunit SA1 as a putative synthetic-essential target in cancers carrying inactivating mutations of its paralog, SA2. In SA2-deficient Ewing sarcoma and bladder cancer, further depletion of SA1 profoundly and specifically suppressed cancer cell proliferation, survival, and tumorigenic potential. Mechanistically, inhibition of SA1 in the SA2-mutated cells led to premature chromatid separation, dramatic extension of mitotic duration, and consequently, lethal failure of cell division. More importantly, depletion of SA1 rendered those SA2-mutated cells more susceptible to DNA damage, especially double-strand breaks (DSBs), due to reduced functionality of DNA repair. Furthermore, inhibition of SA1 sensitized the SA2-deficient cancer cells to PARP inhibitors in vitro and in vivo, providing a potential therapeutic strategy for patients with SA2-deficient tumors.