- Browse by Author
Browsing by Author "Huang, Sherri Y."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item AP2IX-4, a cell cycle regulated nuclear factor, modulates gene expression during bradyzoite development in toxoplasma gondii(2017-01-10) Huang, Sherri Y.; Arrizabalaga, Gustavo; Sullivan, William J., Jr.; Lu, Tao; Takagi, Yuichiro; Zhang, Jian-TingToxoplasma gondii is a ubiquitous, protozoan parasite contributing significantly to global human and animal health. In the host, this obligate intracellular parasite converts into a latent tissue cyst form known as the bradyzoite, which is impervious to the immune response. The tissue cysts facilitate wide-spread transmission through the food chain and give rise to chronic toxoplasmosis in immune compromised patients. In addition, they may reactivate into replicating tachyzoites which cause tissue damage and disseminated disease. Current available drugs do not appear to have appreciable activity against latent bradyzoites. Therefore, a better understanding of the molecular mechanisms that drive interconversion between tachyzoite and bradyzoite forms is required to manage transmission and pathogenesis of Toxoplasma. Conversion to the bradyzoite is accompanied by an altered transcriptome, but the molecular players directing this process are largely uncharacterized. Studies of stage-specific promoters revealed that conventional cis-acting mechanisms operate to regulate developmental gene expression during tissue cyst formation. The major class of transcription factor likely to work through these cis-regulatory elements appears to be related to the Apetala-2 (AP2) family in plants. The Toxoplasma genome contains nearly 70 proteins harboring at least one predicted AP2 domain, but to date only three of these T. gondii AP2 proteins have been linked to bradyzoite development. We show that the putative T. gondii transcription factor, AP2IX-4, is localized to the parasite nucleus and exclusively expressed in tachyzoites and bradyzoites undergoing division. Knockout of AP2IX-4 had negligible effect on tachyzoite replication, but resulted in a reduced frequency of bradyzoite cysts in response to alkaline stress induction – a defect that is reversible by complementation. Microarray analyses revealed an enhanced activation of bradyzoite-associated genes in the AP2IX-4 knockout during alkaline conditions. In mice, the loss of AP2IX-4 resulted in a modest virulence defect and reduced brain cyst burden. Complementation of the AP2IX-4 knockout restored cyst counts to wild-type levels. These findings illustrate the complex role of AP2IX-4 in bradyzoite development and that certain transcriptional mechanisms responsible for tissue cyst development operate across parasite division.Item Targeting the Hedgehog Pathway in Pediatric Medulloblastoma(MDPI, 2015) Huang, Sherri Y.; Yang, Jer-Yen; Department of Pharmacology and Toxicology, IU School of MedicineMedulloblastoma (MB), a primitive neuroectomal tumor of the cerebellum, is the most common malignant pediatric brain tumor. The cause of MB is largely unknown, but aberrant activation of Hedgehog (Hh) pathway is responsible for ~30% of MB. Despite aggressive treatment with surgical resection, radiation and chemotherapy, 70%-80% of pediatric medulloblastoma cases can be controlled, but most treated patients suffer devastating side effects. Therefore, developing a new effective treatment strategy is urgently needed. Hh signaling controls transcription of target genes by regulating activities of the three Glioma-associated oncogene (Gli1-3) transcription factors. In this review, we will focus on current clinical treatment options of MB and discuss mechanisms of drug resistance. In addition, we will describe current known molecular pathways which crosstalk with the Hedgehog pathway both in the context of medulloblastoma and non-medulloblastoma cancer development. Finally, we will introduce post-translational modifications that modulate Gli1 activity and summarize the positive and negative regulations of the Hh/Gli1 pathway. Towards developing novel combination therapies for medulloblastoma treatment, current information on interacting pathways and direct regulation of Hh signaling should prove critical.