- Browse by Author
Browsing by Author "Jiang, Yanchao"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Activation of Rap1 inhibits NADPH oxidase-dependent ROS generation in retinal pigment epithelium and reduces choroidal neovascularization(Federation of American Society for Experimental Biology, 2014-01) Wang, Haibo; Jiang, Yanchao; Shi, Dallas; Quilliam, Lawrence A.; Chrzanowska-Wodnicka, Magdalena; Wittchen, Erika S.; Li, Dean Y.; Hartnett, M. Elizabeth; Department of Biochemistry & Molecular Biology, IU School of MedicineActivation of Rap1 GTPase can improve the integrity of the barrier of the retina pigment epithelium (RPE) and reduce choroidal neovascularization (CNV). Inhibition of NADPH oxidase activation also reduces CNV. We hypothesize that Rap1 inhibits NADPH oxidase-generated ROS and thereby reduces CNV formation. Using a murine model of laser-induced CNV, we determined that reduced Rap1 activity in RPE/choroid occurred with CNV formation and that activation of Rap1 by 2'-O-Me-cAMP (8CPT)-reduced laser-induced CNV via inhibiting NADPH oxidase-generated ROS. In RPE, inhibition of Rap1 by Rap1 GTPase-activating protein (Rap1GAP) increased ROS generation, whereas activation of Rap1 by 8CPT reduced ROS by interfering with the assembly of NADPH oxidase membrane subunit p22phox with NOX4 or cytoplasmic subunit p47phox. Activation of NADPH oxidase with Rap1GAP reduced RPE barrier integrity via cadherin phosphorylation and facilitated choroidal EC migration across the RPE monolayer. Rap1GAP-induced ROS generation was inhibited by active Rap1a, but not Rap1b, and activation of Rap1a by 8CPT in Rap1b(-/-) mice reduced laser-induced CNV, in correlation with decreased ROS generation in RPE/choroid. These findings provide evidence that active Rap1 reduces CNV by interfering with the assembly of NADPH oxidase subunits and increasing the integrity of the RPE barrier.Item Alcohol Metabolizing Enzymes, Microsomal Ethanol Oxidizing System, Cytochrome P450 2E1, Catalase, and Aldehyde Dehydrogenase in Alcohol-Associated Liver Disease(MDPI, 2020-03) Jiang, Yanchao; Zhang, Ting; Kusumanchi, Praveen; Han, Sen; Yang, Zhihong; Liangpunsakul, Suthat; Medicine, School of MedicineOnce ingested, most of the alcohol is metabolized in the liver by alcohol dehydrogenase to acetaldehyde. Two additional pathways of acetaldehyde generation are by microsomal ethanol oxidizing system (cytochrome P450 2E1) and catalase. Acetaldehyde can form adducts which can interfere with cellular function, leading to alcohol-induced liver injury. The variants of alcohol metabolizing genes encode enzymes with varied kinetic properties and result in the different rate of alcohol elimination and acetaldehyde generation. Allelic variants of these genes with higher enzymatic activity are believed to be able to modify susceptibility to alcohol-induced liver injury; however, the human studies on the association of these variants and alcohol-associated liver disease are inconclusive. In addition to acetaldehyde, the shift in the redox state during alcohol elimination may also link to other pathways resulting in activation of downstream signaling leading to liver injury.Item Long non-coding RNAs in liver diseases: Focusing on nonalcoholic fatty liver disease, alcohol-related liver disease, and cholestatic liver disease(The Korean Association for the Study of the Liver, 2020-10) Han, Sen; Zhang, Ting; Kusumanchi, Praveen; Huda, Nazmul; Jiang, Yanchao; Yang, Zhihong; Liangpunsakul, Suthat; Medicine, School of MedicineLong non-coding RNAs (lncRNAs), a class of transcribed RNA molecules with the lengths exceeding 200 nucleotides, are not translated into protein. They can modulate protein-coding genes by controlling transcriptional and posttranscriptional processes. The dysregulation of lncRNAs has been related to various pathological disorders. In this review, we summarized the current knowledge of lncRNAs and their implications in the pathogenesis of three common liver diseases: nonalcoholic fatty liver disease, alcohol-related liver disease, and cholestatic liver disease. Future studies to further define the role of lncRNAs and their mechanisms in various types of liver diseases should be explored. An improved understanding from these studies will provide us a useful perspective leading to mechanism-based intervention by targeting specific lncRNAs for the treatment of liver diseases.Item Stress-responsive gene FKBP5 mediates alcohol-induced liver injury through the hippo pathway and CXCL1 signaling(Wiley, 2021-09) Kusumanchi, Praveen; Liang, Tiebing; Zhang, Ting; Ross, Ruth Ann; Han, Sen; Chandler, Kristina; Oshodi, Adepeju; Jiang, Yanchao; Dent, Alexander L.; Skill, Nicholas J.; Huda, Nazmul; Ma, Jing; Yang, Zhihong; Liangpunsakul, Suthat; Medicine, School of MedicineChronic alcohol drinking is a major risk factor for alcohol-associated liver disease (ALD). FK506-binding protein 51 (FKBP5), a co-chaperone protein, is involved in many key regulatory pathways. It is known to be involved in stress-related disorders but there are no reports regarding its role in ALD. This present study aimed to examine the molecular mechanism of FKBP5 in ALD. We found a significant increase in hepatic FKBP5 transcripts and protein expression in patients with ALD and mice fed with chronic-plus-single binge ethanol. Loss of Fkbp5 in mice protected against alcohol-induced hepatic steatosis and inflammation. Transcriptomic analysis revealed a significant reduction of Tead1 and Cxcl1 mRNA in ethanol-fed Fkbp5-/- mice. Ethanol-induced Fkbp5 expression was secondary to downregulation of methylation level at its 5′ UTR promoter region. The increase in Fkbp5 expression led to induction in transcription factor Tead1 through Hippo signaling pathway. Fkbp5 can interact with YAP upstream kinase, MST1, affecting its ability to phosphorylate YAP and the inhibitory effect of hepatic YAP phosphorylation by ethanol leading to YAP nuclear translocation and TEAD1 activation. Activation of TEAD1 led to increased expression of its novel target, CXCL1, a chemokine-mediated neutrophil recruitment, causing hepatic inflammation and neutrophil infiltration in our mouse model. Conclusion We identified a novel FKBP5-YAP-TEAD1-CXCL1 axis in the pathogenesis of ALD. Loss of FKBP5 ameliorates alcohol-induced liver injury through the Hippo pathway and CXCL1 signaling, suggesting its potential role as a target for the treatment of ALD.Item Transcriptomic analysis reveals the miRNAs responsible for liver regeneration associated with mortality in alcoholic hepatitis(Wiley, 2021-11) Yang, Zhihong; Zhang, Ting; Kusumanchi, Praveen; Tang, Qing; Sun, Zhaoli; Radaeva, Svetlana; Peiffer, Brandon; Shah, Vijay H.; Kamath, Patrick; Gores, Greg J.; Sanyal, Arun; Chalasani, Naga; Jiang, Yanchao; Huda, Nazmul; Ma, Jing; Liangpunsakul, Suthat; Medicine, School of MedicineWe conducted a comprehensive serum transcriptomic analysis to explore the roles of miRNAs in alcoholic hepatitis (AH) pathogenesis and their prognostic significance. Serum miRNA profiling was performed in 15 controls, 20 heavy drinkers without liver disease, and 65 patients with AH and compared to publicly available hepatic miRNA profiling in AH patients. Among the top 26 miRNAs, the expression of miR-30b-5p, miR-20a-5p, miR-146a-5p, and miR-26b-5p were significantly reduced in both serum and liver of AH patients. Pathway analysis of the potential targets of these miRNAs uncovered the genes related to DNA synthesis and cell cycle progression pathways, including RRM2, CCND1, CCND2, MYC, and PMAIP1. We found a significant increase in the protein expression of RRM2, CCND1, and CCND2, but not MYC and PMAIP1 in AH patients who underwent liver transplantation; miR-26b-5p and miR-30b-5p inhibited the 3’-UTR luciferase activity of RRM2 and CCND2, and miR-20a-5p reduced the 3’-UTR luciferase activity of CCND1 and CCND2. During a median follow-up of 346 days, 21% of AH patients died; these patients had higher BMI, MELD, serum miR-30b-5p, miR-20a-5p, miR-146a-5p, and miR-26b-5p than those who survived. Cox regression analysis showed BMI, MELD score, miR-20a-5p, miR-146a-5p, and miR-26b-5p predicted the mortality. Conclusion: Patients with AH attempt to deal with hepatocyte injury by down-regulating specific miRNAs and upregulating genes responsible for DNA synthesis and cell cycle progression. Higher expression of these miRNAs, suggestive of a diminished capacity in liver regeneration, predicts short-term mortality in AH patients.