- Browse by Author
Browsing by Author "Jucker, Mathias"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer's disease(National Academy of Sciences, 2017-12-05) Rasmussen, Jay; Mahler, Jasmin; Beschorner, Natalie; Kaeser, Stephan A.; Häsler, Lisa M.; Baumann, Frank; Nyström, Sofie; Portelius, Erik; Blennow, Kaj; Lashley, Tammaryn; Fox, Nick C.; Sepulveda-Falla, Diego; Glatzel, Markus; Oblak, Adrian L.; Ghetti, Bernardino; Nilsson, K. Peter R.; Hammarström, Per; Staufenbiel, Matthias; Walker, Lary C.; Jucker, Mathias; Pathology and Laboratory Medicine, School of MedicineThe molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain. To this end, we analyzed the LCO-stained cores of β-amyloid plaques in postmortem tissue sections from frontal, temporal, and occipital neocortices in 40 cases of familial Alzheimer's disease (AD) or sporadic (idiopathic) AD (sAD). The spectral attributes of LCO-bound plaques varied markedly in the brain, but the mean spectral properties of the amyloid cores were generally similar in all three cortical regions of individual patients. Remarkably, the LCO amyloid spectra differed significantly among some of the familial and sAD subtypes, and between typical patients with sAD and those with posterior cortical atrophy AD. Neither the amount of Aβ nor its protease resistance correlated with LCO spectral properties. LCO spectral amyloid phenotypes could be partially conveyed to Aβ plaques induced by experimental transmission in a mouse model. These findings indicate that polymorphic Aβ-amyloid deposits within the brain cluster as clouds of conformational variants in different AD cases. Heterogeneity in the molecular architecture of pathogenic Aβ among individuals and in etiologically distinct subtypes of AD justifies further studies to assess putative links between Aβ conformation and clinical phenotype.Item Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease(American Academy of Neurology, 2015-09) Wang, Fen; Gordon, Brian A.; Ryman, Davis C.; Ma, Shengmei; Xiong, Chengjie; Hassenstab, Jason; Goate, Alison; Fagan, Anne M.; Cairns, Nigel J.; Marcus, Daniel S.; McDade, Eric; Ringman, John M.; Graff-Radford, Neill R.; Ghetti, Bernardino; Farlow, Martin R.; Sperling, Reisa; Salloway, Steve; Schofield, Peter R.; Masters, Colin L.; Martins, Ralph N.; Rossor, Martin N. N.; Jucker, Mathias; Danek, Adrian; Förster, Stefan; Lane, Christopher A.S.; Morris, John C.; Benzinger, Tammie L. S.; Bateman, Randall J.; Department of Neurology, IU School of MedicineOBJECTIVE: To investigate the associations of cerebral amyloidosis with concurrent cognitive performance and with longitudinal cognitive decline in asymptomatic and symptomatic stages of autosomal dominant Alzheimer disease (ADAD). METHODS: Two hundred sixty-three participants enrolled in the Dominantly Inherited Alzheimer Network observational study underwent neuropsychological evaluation as well as PET scans with Pittsburgh compound B. One hundred twenty-one participants completed at least 1 follow-up neuropsychological evaluation. Four composite cognitive measures representing global cognition, episodic memory, language, and working memory were generated using z scores from a battery of 13 standard neuropsychological tests. General linear mixed-effects models were used to investigate the relationship between baseline cerebral amyloidosis and baseline cognitive performance and whether baseline cerebral amyloidosis predicts cognitive change over time (mean follow-up 2.32 years ± 0.92, range 0.89-4.19) after controlling for estimated years from expected symptom onset, APOE ε4 allelic status, and education. RESULTS: In asymptomatic mutation carriers, amyloid burden was not associated with baseline cognitive functioning but was significantly predictive of longitudinal decline in episodic memory. In symptomatic mutation carriers, cerebral amyloidosis was correlated with worse baseline performance in multiple cognitive composites and predicted greater decline over time in global cognition, working memory, and Mini-Mental State Examination. CONCLUSIONS: Cerebral amyloidosis predicts longitudinal episodic memory decline in presymptomatic ADAD and multidomain cognitive decline in symptomatic ADAD. These findings imply that amyloidosis in the brain is an indicator of early cognitive decline and provides a useful outcome measure for early assessment and prevention treatment trials.Item Decreased body mass index in the preclinical stage of autosomal dominant Alzheimer's disease(SpringerNature, 2017-04-27) Müller, Stephan; Preische, Oliver; Sohrabi, Hamid R.; Gräber, Susanne; Jucker, Mathias; Dietzsch, Janko; Ringman, Ralph N.; Martins, Ralph N.; McDade, Eric; Schofield, Peter R.; Ghetti, Bernardino; Rossor, Martin; Graff-Radford, Neill R.; Levin, Johannes; Galasko, Douglas; Quaid, Kimberly A.; Salloway, Stephen; Xiong, Chengjie; Benzinger, Tammie; Buckles, Virginia; Masters, Colin L.; Sperling, Reisa; Bateman, Randall J.; Morris, John C.; Laske, Christoph; Department of Pathology and Laboratory Medicine, School of MedicineThe relationship between body-mass index (BMI) and Alzheimer´s disease (AD) has been extensively investigated. However, BMI alterations in preclinical individuals with autosomal dominant AD (ADAD) have not yet been investigated. We analyzed cross-sectional data from 230 asymptomatic members of families with ADAD participating in the Dominantly Inherited Alzheimer Network (DIAN) study including 120 preclinical mutation carriers (MCs) and 110 asymptomatic non-carriers (NCs). Differences in BMI and their relation with cerebral amyloid load and episodic memory as a function of estimated years to symptom onset (EYO) were analyzed. Preclinical MCs showed significantly lower BMIs compared to NCs, starting 11.2 years before expected symptom onset. However, the BMI curves begun to diverge already at 17.8 years before expected symptom onset. Lower BMI in preclinical MCs was significantly associated with less years before estimated symptom onset, higher global Aβ brain burden, and with lower delayed total recall scores in the logical memory test. The study provides cross-sectional evidence that weight loss starts one to two decades before expected symptom onset of ADAD. Our findings point toward a link between the pathophysiology of ADAD and disturbance of weight control mechanisms. Longitudinal follow-up studies are warranted to investigate BMI changes over time.Item Diagnostic Value of Subjective Memory Complaints Assessed with a Single Item in Dominantly Inherited Alzheimer’s Disease: Results of the DIAN Study(Hindawi, 2015) Laske, Christoph; Sohrabi, Hamid R.; Jasielec, Mateusz S.; Müller, Stephan; Koehler, Niklas K.; Gräber, Susanne; Förster, Stefan; Drzezga, Alexander; Mueller-Sarnowski, Felix; Danek, Adrian; Jucker, Mathias; Bateman, Randall J.; Buckles, Virginia; Saykin, Andrew J.; Martins, Ralph N.; Morris, John C.; Indiana Alzheimer Disease Center, Indiana University School of MedicineObjective. We examined the diagnostic value of subjective memory complaints (SMCs) assessed with a single item in a large cross-sectional cohort consisting of families with autosomal dominant Alzheimer’s disease (ADAD) participating in the Dominantly Inherited Alzheimer Network (DIAN). Methods. The baseline sample of 183 mutation carriers (MCs) and 117 noncarriers (NCs) was divided according to Clinical Dementia Rating (CDR) scale into preclinical (CDR 0; MCs: ; NCs: ), early symptomatic (CDR 0.5; MCs: ; NCs: ), and dementia stage (CDR ≥ 1; MCs: ; NCs: ). These groups were subdivided by the presence or absence of SMCs. Results. At CDR 0, SMCs were present in 12.1% of MCs and 9.2% of NCs . At CDR 0.5, SMCs were present in 66.7% of MCs and 62.5% of NCs . At CDR ≥ 1, SMCs were present in 96.4% of MCs. SMCs in MCs were significantly associated with CDR, logical memory scores, Geriatric Depression Scale, education, and estimated years to onset. Conclusions. The present study shows that SMCs assessed by a single-item scale have no diagnostic value to identify preclinical ADAD in asymptomatic individuals. These results demonstrate the need of further improvement of SMC measures that should be examined in large clinical trials.Item Seizures as an early symptom of autosomal dominant Alzheimer's disease(Elsevier, 2019-04) Vöglein, Jonathan; Noachtar, Soheyl; McDade, Eric; Quaid, Kimberly A.; Salloway, Stephen; Ghetti, Bernardino; Noble, James; Berman, Sarah; Chhatwal, Jasmeer; Mori, Hiroshi; Fox, Nick; Allegri, Ricardo; Masters, Colin L.; Buckles, Virginia; Ringman, John M.; Rossor, Martin; Schofield, Peter R.; Sperling, Reisa; Jucker, Mathias; Laske, Christoph; Paumier, Katrina; Morris, John C.; Bateman, Randall J.; Levin, Johannes; Danek, Adrian; Medical and Molecular Genetics, School of MedicineOur objective was to assess the reported history of seizures in cognitively asymptomatic mutation carriers for autosomal dominant Alzheimer's disease (ADAD) and the predictive value of seizures for mutation carrier status in cognitively asymptomatic first-degree relatives of ADAD patients. Seizure occurrence in the Dominantly Inherited Alzheimer Network observational study was correlated with mutation carrier status in cognitively asymptomatic subjects. Of 276 cognitively asymptomatic individuals, 11 (4%) had experienced seizures, and nine of these carried an ADAD mutation. Thus, in the Dominantly Inherited Alzheimer Network population, seizure frequency in mutation carriers was significantly higher than in noncarriers (p = 0.04), and the positive predictive value of seizures for the presence of a pathogenic mutation was 81.8%. Among cognitively asymptomatic ADAD family members, the occurrence of seizures increases the a priori risk of 50% mutation-positive status to about 80%. This finding suggests that ADAD mutations increase the risk of seizures.Item Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease(Nature Research, 2019-02) Preische, Oliver; Schultz, Stephanie A.; Apel, Anja; Kuhle, Jens; Kaeser, Stephan A.; Barro, Christian; Gräber, Susanne; Kuder-Buletta, Elke; LaFougere, Christian; Laske, Christoph; Vöglein, Jonathan; Levin, Johannes; Masters, Colin L.; Martins, Ralph; Schofield, Peter R.; Rossor, Martin N.; Graff-Radford, Neill R.; Salloway, Stephen; Ghetti, Bernardino; Ringman, John M.; Noble, James M.; Chhatwal, Jasmeer; Goate, Alison M.; Benzinger, Tammie L. S.; Morris, John C.; Bateman, Randall J.; Wang, Guoqiao; Fagan, Anne M.; McDade, Eric M.; Gordon, Brian A.; Jucker, Mathias; Alzheimer Network; Allegri, Ricardo; Amtashar, Fatima; Bateman, Randall; Benzinger, Tammie; Berman, Sarah; Bodge, Courtney; Brandon, Susan; Brooks, William; Buck, Jill; Buckles, Virginia; Chea, Sochenda; Chhatwal, Jasmeer; Chrem, Patricio; Chui, Helena; Cinco, Jake; Clifford, Jack; Cruchaga, Carlos; D’Mello, Mirelle; Donahue, Tamara; Douglas, Jane; Edigo, Noelia; Erekin-Taner, Nilufer; Fagan, Anne; Farlow, Marty; Farrar, Angela; Feldman, Howard; Flynn, Gigi; Fox, Nick; Franklin, Erin; Fujii, Hisako; Gant, Cortaiga; Gardener, Samantha; Ghetti, Bernardino; Goate, Alison; Goldman, Jill; Gordon, Brian; Graff-Radford, Neill; Gray, Julia; Gurney, Jenny; Hassenstab, Jason; Hirohara, Mie; Holtzman, David; Hornbeck, Russ; DiBari, Siri Houeland; Ikeuchi, Takeshi; Ikonomovic, Snezana; Jerome, Gina; Jucker, Mathias; Karch, Celeste; Kasuga, Kensaku; Kawarabayashi, Takeshi; Klunk, William; Koeppe, Robert; Kuder-Buletta, Elke; Laske, Christoph; Lee, Jae-Hong; Levin, Johannes; Marcus, Daniel; Martins, Ralph; Mason, Neal Scott; Masters, Colin; Maue-Dreyfus, Denise; McDade, Eric; Montoya, Lucy; Mori, Hiroshi; Morris, John; Nagamatsu, Akem; Neimeyer, Katie; Noble, James; Norton, Joanne; Perrin, Richard; Raichle, Marc; Ringman, John; Roh, Jee Hoon; Salloway, Stephen; Schofield, Peter; Shimada, Hiroyuki; Shiroto, Tomoyo; Shoji, Mikio; Sigurdson, Wendy; Sohrabi, Hamid; Sparks, Paige; Suzuki, Kazushi; Swisher, Laura; Taddei, Kevin; Wang, Jen; Wang, Peter; Weiner, Mike; Wolfsberger, Mary; Xiong, Chengjie; Xu, Xiong; Pathology and Laboratory Medicine, School of MedicineNeurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker.Item Serum neurofilament light chain levels are associated with white matter integrity in autosomal dominant Alzheimer's disease(Elsevier, 2020-08-01) Schultz, Stephanie A.; Strain, Jeremy F.; Adedokun, Adedamola; Wang, Qing; Preische, Oliver; Kuhle, Jens; Flores, Shaney; Keefe, Sarah; Dincer, Aylin; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Cash, David M.; Chhatwal, Jasmeer; Cruchaga, Carlos; Ewers, Michael; Fox, Nick N.; Ghetti, Bernardino; Goate, Alison; Graff-Radford, Neill R.; Hassenstab, Jason J.; Hornbeck, Russ; Jack, Clifford; Johnson, Keith; Joseph-Mathurin, Nelly; Karch, Celeste M.; Koeppe, Robert A.; Lee, Athene K. W.; Levin, Johannes; Masters, Colin; McDade, Eric; Perrin, Richard J.; Rowe, Christopher C.; Salloway, Stephen; Saykin, Andrew J.; Sperling, Reisa; Su, Yi; Villemagne, Victor L.; Vöglein, Jonathan; Weiner, Michael; Xiong, Chengjie; Fagan, Anne M.; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.; Jucker, Mathias; Gordon, Brian A.; Pathology and Laboratory Medicine, School of MedicineNeurofilament light chain (NfL) is a protein that is selectively expressed in neurons. Increased levels of NfL measured in either cerebrospinal fluid or blood is thought to be a biomarker of neuronal damage in neurodegenerative diseases. However, there have been limited investigations relating NfL to the concurrent measures of white matter (WM) decline that it should reflect. White matter damage is a common feature of Alzheimer's disease. We hypothesized that serum levels of NfL would associate with WM lesion volume and diffusion tensor imaging (DTI) metrics cross-sectionally in 117 autosomal dominant mutation carriers (MC) compared to 84 non-carrier (NC) familial controls as well as in a subset (N = 41) of MC with longitudinal NfL and MRI data. In MC, elevated cross-sectional NfL was positively associated with WM hyperintensity lesion volume, mean diffusivity, radial diffusivity, and axial diffusivity and negatively with fractional anisotropy. Greater change in NfL levels in MC was associated with larger changes in fractional anisotropy, mean diffusivity, and radial diffusivity, all indicative of reduced WM integrity. There were no relationships with NfL in NC. Our results demonstrate that blood-based NfL levels reflect WM integrity and supports the view that blood levels of NfL are predictive of WM damage in the brain. This is a critical result in improving the interpretability of NfL as a marker of brain integrity, and for validating this emerging biomarker for future use in clinical and research settings across multiple neurodegenerative diseases.