- Browse by Author
Browsing by Author "Liu, Jiannan"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item CGPE: A user-friendly gene and pathway explore webserver for public cancer transcriptional dataLiu, Jiannan; Dong, Chuanpeng; Liu, Yunlong; Wu, HuanmeiHigh throughput technology has been widely used by researchers to understand diseases at the molecular level. Database and servers for downloading and analyzing these publicly data is available as well. But there is still lacking tools for facilitating researchers to study the function of genes in pathways views by integrated public omics data.Item Highly robust model of transcription regulator activity predicts breast cancer overall survival(BMC, 2020) Dong, Chuanpeng; Liu, Jiannan; Chen, Steven X.; Dong, Tianhan; Jiang, Guanglong; Wang, Yue; Wu, Huanmei; Reiter, Jill L.; Liu, Yunlong; Medical and Molecular Genetics, School of MedicineBackground: While several multigene signatures are available for predicting breast cancer prognosis, particularly in early stage disease, effective molecular indicators are needed, especially for triple-negative carcinomas, to improve treatments and predict diagnostic outcomes. The objective of this study was to identify transcriptional regulatory networks to better understand mechanisms giving rise to breast cancer development and to incorporate this information into a model for predicting clinical outcomes. Methods: Gene expression profiles from 1097 breast cancer patients were retrieved from The Cancer Genome Atlas (TCGA). Breast cancer-specific transcription regulatory information was identified by considering the binding site information from ENCODE and the top co-expressed targets in TCGA using a nonlinear approach. We then used this information to predict breast cancer patient survival outcome. Result: We built a multiple regulator-based prediction model for breast cancer. This model was validated in more than 5000 breast cancer patients from the Gene Expression Omnibus (GEO) databases. We demonstrated our regulator model was significantly associated with clinical stage and that cell cycle and DNA replication related pathways were significantly enriched in high regulator risk patients. Conclusion: Our findings demonstrate that transcriptional regulator activities can predict patient survival. This finding provides additional biological insights into the mechanisms of breast cancer progression.Item A patient-oriented clinical decision support system for CRC risk assessment and preventative care(BioMed Central, 2018-12-07) Liu, Jiannan; Li, Chenyang; Xu, Jing; Wu, Huanmei; Biohealth Informatics, School of Informatics and ComputingColorectal Cancer (CRC) is the third leading cause of cancer death among men and women in the United States. Research has shown that the risk of CRC associates with genetic and lifestyle factors. It is possible to prevent or minimize certain CRC risks by adopting a healthy lifestyle. Existing Clinical Decision Support Systems (CDSS) mainly targeted physicians as the CDSS users. As a result, the availability of patient-oriented CDSS is limited. Our project is to develop patient-oriented CDSS for active CRC management.Item Transcription factor expression as a predictor of colon cancer prognosis: a machine learning practice(BMC, 2020-09-21) Liu, Jiannan; Dong, Chuanpeng; Jiang, Guanglong; Lu, Xiaoyu; Liu, Yunlong; Wu, Huanmei; BioHealth Informatics, School of Informatics and ComputingBackground Colon cancer is one of the leading causes of cancer deaths in the USA and around the world. Molecular level characters, such as gene expression levels and mutations, may provide profound information for precision treatment apart from pathological indicators. Transcription factors function as critical regulators in all aspects of cell life, but transcription factors-based biomarkers for colon cancer prognosis were still rare and necessary. Methods We implemented an innovative process to select the transcription factors variables and evaluate the prognostic prediction power by combining the Cox PH model with the random forest algorithm. We picked five top-ranked transcription factors and built a prediction model by using Cox PH regression. Using Kaplan-Meier analysis, we validated our predictive model on four independent publicly available datasets (GSE39582, GSE17536, GSE37892, and GSE17537) from the GEO database, consisting of 925 colon cancer patients. Results A five-transcription-factors based predictive model for colon cancer prognosis has been developed by using TCGA colon cancer patient data. Five transcription factors identified for the predictive model is HOXC9, ZNF556, HEYL, HOXC4 and HOXC6. The prediction power of the model is validated with four GEO datasets consisting of 1584 patient samples. Kaplan-Meier curve and log-rank tests were conducted on both training and validation datasets, the difference of overall survival time between predicted low and high-risk groups can be clearly observed. Gene set enrichment analysis was performed to further investigate the difference between low and high-risk groups in the gene pathway level. The biological meaning was interpreted. Overall, our results prove our prediction model has a strong prediction power on colon cancer prognosis. Conclusions Transcription factors can be used to construct colon cancer prognostic signatures with strong prediction power. The variable selection process used in this study has the potential to be implemented in the prognostic signature discovery of other cancer types. Our five TF-based predictive model would help with understanding the hidden relationship between colon cancer patient survival and transcription factor activities. It will also provide more insights into the precision treatment of colon cancer patients from a genomic information perspective.