- Browse by Author
Browsing by Author "Liu, Shaohui"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Comparison of porcine corneal decellularization methods and importance of preserving corneal limbus through decellularization(PLOS, 2021-03-05) Isidan, Abdulkadir; Liu, Shaohui; Chen, Angela M.; Zhang, Wenjun; Li, Ping; Smith, Lester J.; Hara, Hidetaka; Cooper, David K. C.; Ekser, Burcin; Surgery, School of MedicineBackground: The aim of this study is to compare the three previously applied, conventional porcine corneal decellularization methods and to demonstrate the importance of preserving the corneal limbus through decellularization. Methods: Fresh, wild-type (with or without) limbus porcine corneas were decellularized using three different methods, including (i) sodium dodecyl sulfate (SDS), (ii) hypertonic saline (HS), and (iii) N2 gas (NG). Post-treatment evaluation was carried out using histological, residual nuclear material, and ultrastructural analyses. Glycerol was used to help reduce the adverse effects of decellularization. The corneas were preserved for two weeks in cornea storage medium. Results: All three decellularization methods reduced the number of keratocytes at different rates in the stromal tissue. However, all methods, except SDS, resulted in the retention of large numbers of cells and cell fragments. The SDS method (0.1% SDS, 48h) resulted in almost 100% decellularization in corneas without limbus. Low decellularization capacity of the NG method (<50%) could make it unfavorable. Although HS method had a more balanced damage-decellularization ratio, its decellularization capacity was lower than SDS method. Preservation of the corneoscleral limbus could partially prevent structural damage and edema, but it would reduce the decellularization capacity. Conclusion: Our results suggest that SDS is a very powerful decellularization method, but it damages the cornea irreversibly. Preserving the corneoscleral limbus reduces the efficiency of decellularization, but also reduces the damage.Item Conjunctival Fungal Ball Mimicking Melanoma(Elsevier, 2020-04) Chuang, Katherine; Vortmeyer, Alexander; Liu, Shaohui; Ophthalmology, School of MedicineItem Decellularization methods for developing porcine corneal xenografts and future perspectives(Wiley, 2019-11) Isidan, Abdulkadir; Liu, Shaohui; Li, Ping; Lashmet, Matthew; Smith, Lester J.; Hara, Hidetaka; Cooper, David K. C.; Ekser, Burcin; Ophthalmology, School of MedicineCorneal transplantation is the only option to cure corneal opacities. However, there is an imbalance between supply and demand of corneal tissues in the world. To solve the problem of corneal shortage, corneal xenotransplantation studies have been implemented in the past years using porcine corneas. The corneal xenografts could come from (a) wild-type pigs, (b) genetically engineered pigs, (c) decellularized porcine corneas, and (d) decellularized porcine corneas that are recellularized with human corneal cells, eventually with patients' own cells, as in all type of xenografts. All approaches except, the former would reduce or mitigate recipient immune responses. Although several techniques in decellularization have been reported, there is still no standardized protocol for the complete decellularization of corneal tissue. Herein, we reviewed different decellularization methods for porcine corneas based on the mechanism of action, decellularization efficacy, biocompatibility, and the undesirable effects on corneal ultrastructure. We compared 9 decellularization methods including: (a) sodium dodecyl sulfate, (b) triton x-100, (c) hypertonic saline, (d) human serum with electrophoresis, (e) high hydrostatic pressure, (f) freeze-thaw, (h) nitrogen gas, (h) phospholipase A2 , and (i) glycerol with chemical crosslinking methods. It appears that combined methods could be more useful to perform efficient corneal decellularization.Item Spontaneously Regressed Corneal Intrastromal Cyst(Elsevier, 2020-10) Fox, Allison; Pineda, Roberto; Liu, Shaohui; Ophthalmology, School of Medicine