- Browse by Author
Browsing by Author "Liu, Zhimin"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item The colonization of active sand dunes by rhizomatous plants through vegetative propagation and its role in vegetation restoration(2012-07) Liu, Bo; Liu, Zhimin; Wang, LixinThis study aims to elucidate vegetative propagation in Phragmites communis, and its role in colonizing active sand dunes. The experiment was conducted in the Horqin Sand Land in Inner Mongolia, northeastern China. Quadrats were established along twenty transects from the dune slack to the windward slope through the ecotone (a transitional zone between the dune slack and the windward slope of active sand dune). Biomass, biomass allocation and relative growth rate (RGR) of P. communis were quantified monthly from May to August in 2007. Our results showed that rhizomes extended towards the active sand dune at a rate of 523.5 ± 20.8 cm per year. The RGR of ramets and rhizomes increased along the gradient from the dune slack to the windward slope. The percentage of rhizome biomass in total biomass increased significantly along the same gradient. The results indicate that P. communis is able to adjust growth strategy according to the environmental conditions. The results also demonstrate that vegetative propagation of rhizomatous grasses significantly contributes to plant encroachment to active sand dunes and plays an important role in the vegetation restoration of dune fields.Item Geographical distribution and determining factors of different invasive ranks of alien species across China(Elsevier, 2020-06) Zhou, Quanlai; Wang, Yongcui; Li, Xuehua; Liu, Zhimin; Wu, Jing; Musa, Ala; Ma, Qu; Yu, Haibin; Cui, Xue; Wang, Lixin; Earth Sciences, School of ScienceDetermination of the geographical distribution and life-form spectra of alien species with different invasive abilities are essential to understand the process of invasion and to develop measures to manage alien species. Based on six classifications of Chinese alien species, environmental and social data, we determined species density, life-form spectrum of alien species, and the relationship between species density of alien species and climatic or social factors. The species density of alien species increased from the northwest to the southeast regions of China for all the six ranks. The boundary line between low and high species density of alien species was consistent with the dividing line of population density (the “Hu Line”). Mean annual precipitation was the most important factor for species density in malignant invaders, serious invaders, local invaders, and species requiring further observation (Ranks I, II, III, and V, respectively). Gross domestic product per square kilometer and annual minimum temperature were the most important factors in mild invaders and cultivated aliens (Ranks IV and VI, respectively). Annual and biennial herbs made up 52.9% to 71.2% of total species in Ranks I to IV; shrubs and trees 3.7% to 14.7%. The annual and biennial herbs were 35.5% and 32.6%, and the shrubs and trees were 25.3% and 31.6% in Ranks IV and VI. Results implied that precipitation was the most important factor on species density for the invasive alien species. However, social factors and temperature were the most important factors for the non-invasive alien species. The invasive alien species had a high proportion of annual and biennial herbs and non-invasive alien had a high proportion of shrubs and trees. It is important to understand the geographical distribution and life-form spectra of various invasive alien species for alien species controls.Item Relationship between seed morphological traits and wind dispersal trajectory(CSIRO, 2019) Zhou, Quanlai; Liu, Zhimin; Xin, Zhiming; Daryanto, Stefani; Wang, Lixin; Qian, Jianqiang; Wang, Yongcui; Liang, Wei; Qin, Xuanping; Zhao, Yingming; Li, Xinle; Cui, Xue; Liu, Minghu; Earth Sciences, School of ScienceThe structure and dynamics of plant populations and communities are largely influenced by seed dispersal. How the wind dispersal trajectory of seeds shifts with differences in seed morphology remains unknown. We used a wind tunnel and video camera to track the dispersal trajectory of seven species of Calligonum whose seeds have different kinds of appendages and other morphological traits, using variable wind speeds and release heights to determine the relationship between seed morphological traits and wind dispersal trajectory. Concave-, straight-line-, horizontal-projectile- and projectile-shaped trajectories were found. Dispersal trajectories such as the horizontal projectile (HP) and projectile (P) tended to have a long dispersal distance. Straight line (SL) and concave curve (CC) trajectories tended to have a short dispersal distance. Seeds with bristles and large mass tended to have SL and CC trajectories, those with wings or balloon and small mass tended to have HP and P trajectories. Wind speed tended to have a stronger influence on the dispersal trajectory of light and low-wing-loading seeds, and release height tended to have a stronger influence on the dispersal trajectory of heavy and high-wing-loading seeds. Thus, seed wind dispersal trajectory is not only determined by seed morphological characteristics but also by environmental factors such as wind speed and release height.Item Responses of secondary wind dispersal to environmental characteristics and diaspore morphology of seven Calligonum species(Wiley, 2019) Zhou, Quanlai; Liu, Zhimin; Xin, Zhiming; Daryanto, Stefani; Wang, Lixin; Xuehua, Li; Wang, Yongcui; Liang, Wei; Qin, Xuanping; Zhao, Yingming; Li, Xinle; Cui, Xue; Liu, Minghu; Earth Sciences, School of ScienceSecondary diaspore dispersal by wind, that is, wind‐driven movement along the ground surface (GS), is important for the structure and dynamics of plant populations and communities. However, how wind velocity (WV), GS, and diaspore morphology influence diaspore secondary dispersal by wind are unclear. We used a wind tunnel and video camera to measure the threshold of WV (TWV) and diaspore velocities (DV) of secondary diaspore dispersal. Diaspores of seven Calligonum species with different appendages (wings, bristles, membranous balloon, and wings + thorns) were used to determine the TWV and DV under variable wind speed (4, 6, 8, and 10 m s‐1) and four GSs (cement, sand, loam, and gravel). GS and diaspore morphological traits explained 37.1 and 18% of diaspore TWV, respectively. Meanwhile, WV, GS, and diaspore morphological traits explained 62.4, 13.6, and 3.2% of DV, respectively. An increasing trend was shown for TWV, and a decreasing trend was shown for DV in the order of cement, sand, loam, and gravel surfaces. Spherical and light diaspores had low TWV and high DV, whereas winged and heavy diaspores had high TWV and low DV. Our results indicated that adaptive features of diaspore appendages might be the result of selection for primary dispersal or secondary dispersal. The mechanism of diaspore secondary dispersal is important for understanding the recovery of degraded sand dunes and providing theoretical support for restoration practices.Item Sand burial compensates for the negative effects of erosion on the dune-building shrub Artemisia wudanica(2014-01) Liu, Bo; Liu, Zhimin; Lü, Xiaotao; Maestre, Fernando T.; Wang, LixinAims Plant species response to erosion or burial has been extensively studied, but few studies have examined the combined effects of erosion and subsequent burial on plants. In active sand dunes of northern China, Artemisia wudanica falls to the ground following wind erosion, accumulating sand among fallen stems in a process that may facilitate its further growth and development. Therefore, we hypothesize that subsequent sand burial might compensate for the negative effects of erosion in the growth of A. wudanica. Methods A common garden experiment was conducted using A. wudanica seedlings to evaluate their growth in response to different degrees of burial and erosion as observed at the field. Seedlings were selected and randomly assigned to six erosion treatments, two burial treatments, twelve erosion and subsequent burial treatments, and control. Each treatment was replicated six times. Results Compared with the control treatment, total biomass and the relative growth rate of shoots were stimulated in the erosion and subsequent burial treatments (significantly under the 10 cm burial), hampered in erosion only treatments, and were not affected in the burial only treatments. Adventitious roots and ramets were only observed under burial only and erosion and subsequent burial treatments. Conclusions Our results indicate that subsequent sand burial following erosion compensate for the negative effects of erosion on the growth of A. wudanica seedlings, and greatly contributed to their tolerance to wind erosion.Item Soil phosphorus budget in global grasslands and implications for management(Elsevier, 2017-09) Zhou, Quanlai; Daryanto, Stefani; Xin, Zhiming; Liu, Zhimin; Liu, Minghu; Cui, Xue; Wang, Lixin; Earth Science, School of ScienceGrasslands, accounting for one third of the world terrestrial land surface, are important in determining phosphorus (P) cycle at a global scale. Understanding the impacts of management on P inputs and outputs in grassland ecosystem is crucial for environmental management since a large amount of P is transported through rivers and groundwater and detained by the sea reservoir every year. To better understand P cycle in global grasslands, we mapped the distribution of different grassland types around the world and calculated the corresponding P inputs and outputs for each grassland type using data from literature. The distribution map of P input and output revealed a non-equilibrium condition in many grassland ecosystems, with: (i) a greater extent of input than output in most managed grasslands, but (ii) a more balanced amount between input and output in the majority of natural grasslands. Based on the mass balance between P input and output, we developed a framework to achieve sustainable P management in grasslands and discussed the measures targeting a more balanced P budget. Greater challenge is usually found in heavily-managed than natural grasslands to establish the optimum amount of P for grass and livestock production while minimizing the adverse impacts on surface waters. This study provided a comprehensive assessment of P budget in global grasslands and such information will be critical in determining the appropriate P management measures for various grassland types across the globe.