- Browse by Author
Browsing by Author "Lu, Chunyan"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Coupling Coordination Relationship between Urban Sprawl and Urbanization Quality in the West Taiwan Strait Urban Agglomeration, China: Observation and Analysis from DMSP/OLS Nighttime Light Imagery and Panel Data(MDPI, 2020-10) Lu, Chunyan; Li, Lin; Lei, Yifan; Ren, Chunying; Su, Ying; Huang, Yufei; Chen, Yu; Lei, Shaohua; Fu, Weiwei; Earth Sciences, School of ScienceUrban sprawl is the most prominent characteristic of urbanization, and increasingly affects local and regional sustainable development. The observation and analysis of urban sprawl dynamics and their relationship with urbanization quality are essential for framing integrative urban planning. In this study, the urban areas of the West Taiwan Strait Urban Agglomeration (WTSUA) were extracted using nighttime light imagery from 1992 to 2013. The spatio-temporal characteristics and pattern of urban sprawl were quantitatively analyzed by combining an urban expansion rate index and a standard deviation ellipse model. The urbanization quality was assessed using an entropy weight model, and its relationship with urban sprawl was calculated by a coupling coordination degree model. The results showed that the urban area in the WTSUA experienced a significant increase, i.e., 18,806.73 km2, during the period 1992–2013. The central cities grew by 11.08% and noncentral cities by 27.43%, with a general uneven city rank-size distribution. The urban sprawl showed a circular expansion pattern, accompanied by a gradual centroid migration of urban areas from the southeast coast to the central-western regions. The coupling coordination level between urban expansion and urbanization quality increased from serious incoordination in 1992 to basic coordination in 2013. Dual driving forces involving state-led policies and market-oriented land reform had a positive influence on the harmonious development of urban sprawl and urbanization quality of the WTSUA. This research offers an effective approach to monitor changes in urban sprawl and explore the coupling coordination relationship between urban sprawl and urbanization quality. The study provides important scientific references for the formulation of future policies and planning for sustainable development in urban agglomerations.Item Monitoring the Invasion of Spartina alterniflora Using Multi-source High-resolution Imagery in the Zhangjiang Estuary, China(MDPI, 2017-06) Liu, Mingyue; Li, Huiying; Li, Lin; Man, Weidong; Jia, Mingming; Wang, Zongming; Lu, Chunyan; Earth Science, School of ScienceSpartina alterniflora (S. alterniflora) is one of the most harmful invasive plants in China. Google Earth (GE), as a free software, hosts high-resolution imagery for many areas of the world. To explore the use of GE imagery for monitoring S. alterniflora invasion and developing an understanding of the invasion process of S. alterniflora in the Zhangjiang Estuary, the object-oriented method and visual interpretation were applied to GE, SPOT-5, and Gaofen-1 (GF-1) images. In addition, landscape metrics of S. alterniflora patches adjacent to mangrove forests were calculated and mangrove gaps were recorded by checking whether S. alterniflora exists. The results showed that from 2003–2015, the areal extent of S. alterniflora in the Zhangjiang Estuary increased from 57.94 ha to 116.11 ha, which was mainly converted from mudflats and moved seaward significantly. Analyses of the S. alterniflora expansion patterns in the six subzones indicated that the expansion trends varied with different environmental circumstances and human activities. Land reclamation, mangrove replantation, and mudflat aquaculture caused significant losses of S. alterniflora. The number of invaded gaps increased and S. alterniflora patches adjacent to mangrove forests became much larger and more aggregated during 2003–2015 (the class area increased from 12.13 ha to 49.76 ha and the aggregation index increased from 91.15 to 94.65). We thus concluded that S. alterniflora invasion in the Zhangjiang Estuary had seriously increased and that measures should be taken considering the characteristics shown in different subzones. This study provides an example of applying GE imagery to monitor invasive plants and illustrates that this approach can aid in the development of governmental policies employed to control S. alterniflora invasion. View Full-TextItem Remote Observation in Habitat Suitability Changes for Waterbirds in the West Songnen Plain, China(MDPI, 2019-01) Tian, Yanlin; Wang, Zongming; Mao, Dehua; Li, Lin; Liu, Mingyue; Jia, Mingming; Man, Weidong; Lu, Chunyan; Earth Sciences, School of ScienceBeing one of the most important habitats for waterbirds, China’s West Songnen Plain has experienced substantial damage to its ecosystem, especially the loss and degradation of wetlands and grasslands due to anthropogenic disturbances and climate change. These occurrences have led to an obvious decrease in waterbird species and overall population size. Periodic and timely monitoring of changes in habitat suitability and understanding the potential driving factors for waterbirds are essential for maintaining regional ecological security. In this study, land cover changes from 2000 to 2015 in this eco-sensitive plain were examined using Landsat images and an object-based classification method. Four groups of environmental factors, including human disturbance, water situation, food availability, and shelter safety, characterized by remote sensing data were selected to develop a habitat suitability index (HSI) for assessing habitat suitability for waterbirds. HSI was further classified into four grades (optimum, good, general, and poor), and their spatiotemporal patterns were documented from 2000 to 2015. Our results revealed that cropland expansion and wetland shrinkage were the dominant land cover changes. Waterbird habitat areas in the optimum grade experienced a sharp decline by 7195 km2. The habitat area in good suitability experienced reduction at a change rate of −8.64%, from 38,672 km2 to 35,331 km2. In addition, waterbird habitats in the general and poor grades increased overall by 10.31%. More specifically, the total habitat areas with optimum suitable grade, in five national nature reserves over the study region, decreased by 12.21%, while habitat areas with poor suitable grade increased by 3.89%. Changes in habitat suitability could be largely attributed to the increase in human disturbance, including agricultural cultivation from wetlands and grasslands and the expansion of built-up lands. Our findings indicate that additional attention should be directed towards reducing human impact on habitat suitability for sustainable ecosystems.Item Spatial Expansion and Soil Organic Carbon Storage Changes of Croplands in the Sanjiang Plain, China(MDPI, 2017-04) Man, Weidong; Yu, Hao; Li, Lin; Liu, Mingyue; Mao, Dehua; Ren, Chunying; Wang, Zongming; Jia, Mingming; Miao, Zhenghong; Lu, Chunyan; Li, Huiying; Earth Sciences, School of ScienceSoil is the largest pool of terrestrial organic carbon in the biosphere and interacts strongly with the atmosphere, climate and land cover. Remote sensing (RS) and geographic information systems (GIS) were used to study the spatio-temporal dynamics of croplands and soil organic carbon density (SOCD) in the Sanjiang Plain, to estimate soil organic carbon (SOC) storage. Results show that croplands increased with 10,600.68 km2 from 1992 to 2012 in the Sanjiang Plain. Area of 13,959.43 km2 of dry farmlands were converted into paddy fields. Cropland SOC storage is estimated to be 1.29 ± 0.27 Pg C (1 Pg = 103 Tg = 1015 g) in 2012. Although the mean value of SOCD for croplands decreased from 1992 to 2012, the SOC storage of croplands in the top 1 m in the Sanjiang Plain increased by 70 Tg C (1220 to 1290). This is attributed to the area increases of cropland. The SOCD of paddy fields was higher and decreased more slowly than that of dry farmlands from 1992 to 2012. Conversion between dry farmlands and paddy fields and the agricultural reclamation from natural land-use types significantly affect the spatio-temporal patterns of cropland SOCD in the Sanjiang Plain. Regions with higher and lower SOCD values move northeast and westward, respectively, which is almost consistent with the movement direction of centroids for paddy fields and dry farmlands in the study area. Therefore, these results were verified. SOC storages in dry farmlands decreased by 17.5 Tg·year−1 from 1992 to 2012, whilst paddy fields increased by 21.0 Tg·C·year−1.