- Browse by Author
Browsing by Author "Mechref, Yehia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Identification of Glycopeptides with Multiple Hydroxylysine O-Glycosylation Sites by Tandem Mass Spectrometry(ACS, 2015-11) Zhang, Yanlin; Yu, Chuan-Yih; Song, Ehwang; Li, Shuai Cheng; Mechref, Yehia; Tang, Haixu; Liu, Xiaowen; Department of Biohealth Informatics, IU School of Informatics and ComputingGlycosylation is one of the most common post-translational modifications in proteins, existing in ∼50% of mammalian proteins. Several research groups have demonstrated that mass spectrometry is an efficient technique for glycopeptide identification; however, this problem is still challenging because of the enormous diversity of glycan structures and the microheterogeneity of glycans. In addition, a glycopeptide may contain multiple glycosylation sites, making the problem complex. Current software tools often fail to identify glycopeptides with multiple glycosylation sites, and hence we present GlycoMID, a graph-based spectral alignment algorithm that can identify glycopeptides with multiple hydroxylysine O-glycosylation sites by tandem mass spectra. GlycoMID was tested on mass spectrometry data sets of the bovine collagen α-(II) chain protein, and experimental results showed that it identified more glycopeptide-spectrum matches than other existing tools, including many glycopeptides with two glycosylation sites.Item Quantitative Serum Glycomics of Esophageal Adenocarcinoma, and Other Esophageal Disease Onsets(American Chemical Society, 2009-06) Mechref, Yehia; Hussein, Ahmed; Bekesova, Slavka; Pungpapong, Vitara; Zhang, Min; Dobrolecki, Lacey E.; Hickey, Robert J.; Hammoud, Zane T.; Novotny, Milos V.; Department of Medicine, IU School of MedicineAberrant glycosylation has been implicated in various types of cancers and changes in glycosylation may be associated with signaling pathways during malignant transformation. Glycomic profiling of blood serum, in which cancer cell proteins or their fragments with altered glycosylation patterns are shed, could reveal the altered glycosylation. We performed glycomic profiling of serum from patients with no known disease (N=18), patients with high grade dysplasia (HGD, N=11) and Barrett’s (N=5), and patients with esophageal adenocarcinoma (EAC, N=50) in an attempt to delineate distinct differences in glycosylation between these groups. The relative intensities of 98 features were significantly different among the disease onsets; 26 of these correspond to known glycan structures. The changes in the relative intensities of three of the known glycan structures predicted esophageal adenocarcinoma with 94% sensitivity and better than 60% specificity as determined by receiver operating characteristic (ROC) analysis. We have demonstrated that comparative glycomic profiling of EAC reveals a subset of glycans that can be selected as candidate biomarkers. These markers can differentiate disease-free from HGD, disease-free from EAC, and HGD from EAC. The clinical utility of these glycan biomarkers requires further validation.