- Browse by Author
Browsing by Author "Nilsson, K. Peter R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer's disease(National Academy of Sciences, 2017-12-05) Rasmussen, Jay; Mahler, Jasmin; Beschorner, Natalie; Kaeser, Stephan A.; Häsler, Lisa M.; Baumann, Frank; Nyström, Sofie; Portelius, Erik; Blennow, Kaj; Lashley, Tammaryn; Fox, Nick C.; Sepulveda-Falla, Diego; Glatzel, Markus; Oblak, Adrian L.; Ghetti, Bernardino; Nilsson, K. Peter R.; Hammarström, Per; Staufenbiel, Matthias; Walker, Lary C.; Jucker, Mathias; Pathology and Laboratory Medicine, School of MedicineThe molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain. To this end, we analyzed the LCO-stained cores of β-amyloid plaques in postmortem tissue sections from frontal, temporal, and occipital neocortices in 40 cases of familial Alzheimer's disease (AD) or sporadic (idiopathic) AD (sAD). The spectral attributes of LCO-bound plaques varied markedly in the brain, but the mean spectral properties of the amyloid cores were generally similar in all three cortical regions of individual patients. Remarkably, the LCO amyloid spectra differed significantly among some of the familial and sAD subtypes, and between typical patients with sAD and those with posterior cortical atrophy AD. Neither the amount of Aβ nor its protease resistance correlated with LCO spectral properties. LCO spectral amyloid phenotypes could be partially conveyed to Aβ plaques induced by experimental transmission in a mouse model. These findings indicate that polymorphic Aβ-amyloid deposits within the brain cluster as clouds of conformational variants in different AD cases. Heterogeneity in the molecular architecture of pathogenic Aβ among individuals and in etiologically distinct subtypes of AD justifies further studies to assess putative links between Aβ conformation and clinical phenotype.Item Luminescent conjugated oligothiophenes distinguish between α-synuclein assemblies of Parkinson’s disease and multiple system atrophy(BMC, 2019-12-03) Klingstedt, Therése; Ghetti, Bernardino; Holton, Janice L.; Ling, Helen; Nilsson, K. Peter R.; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineSynucleinopathies [Parkinson’s disease with or without dementia, dementia with Lewy bodies and multiple system atrophy] are neurodegenerative diseases that are defined by the presence of filamentous α-synuclein inclusions. We investigated the ability of luminescent conjugated oligothiophenes to stain the inclusions of Parkinson’s disease and multiple system atrophy. They stained the Lewy pathology of Parkinson’s disease and the glial cytoplasmic inclusions of multiple system atrophy. Spectral analysis of HS-68-stained inclusions showed a red shift in multiple system atrophy, but the difference with Parkinson’s disease was not significant. However, when inclusions were double-labelled for HS-68 and an antibody specific for α-synuclein phosphorylated at S129, they could be distinguished based on colour shifts with blue designated for Parkinson’s disease and red for multiple system atrophy. The inclusions of Parkinson’s disease and multiple system atrophy could also be distinguished using fluorescence lifetime imaging. These findings are consistent with the presence of distinct conformers of assembled α-synuclein in Parkinson’s disease and multiple system atrophy.