- Browse by Author
Browsing by Author "Picard, Christine J."
Now showing 1 - 10 of 23
Results Per Page
Sort Options
Item Amplified fragment length polymorphism analysis supports the valid separate species status of Lucilia caesar and L. illustris (Diptera: Calliphoridae)(Taylor & Francis:, 2017-12-08) Picard, Christine J.; Wells, Jeffrey D.; Ullyot, Anne; Rognes, Knut; Biology, School of ScienceCommon DNA-based species determination methods fail to distinguish some blow flies in the forensically and medically important genus Lucilia Robineau-Desvoidy. This is a practical problem, and it has also been interpreted as casting doubt on the validity of some morphologically defined species. An example is Lucilia illustris and L. caesar, which co-occur in Europe whilst only L. illustris has been collected in North America. Reports that these species shared both mitochondrial and nuclear gene sequences, along with claims that diagnostic morphological characters are difficult to interpret, were used to question their separate species status. We report here that amplified fragment length polymorphism profiles strongly support the validity of both species based on both assignment and phylogenetic analysis, and that traditional identification criteria based on male and female genital morphology are more reliable than has been claimed.Item Blow fly stable isotopes reveal larval diet: A case study in community level anthropogenic effects(Public Library of Science Journals, 2021-04-14) Owings, Charity G.; Gilhooly, William P., III; Picard, Christine J.; Chemistry and Chemical Biology, School of ScienceResponse to human impacts on the environment are typically initiated too late to remediate negative consequences. We present the novel use of stable isotope analysis (SIA) of blow flies to determine human influences on vertebrate communities in a range of human-inhabited environments, from a pristine national park to a dense metropolitan area. The refrain “you are what you eat” applies to the dietary isotope record of all living organisms, and for carrion-breeding blow flies, this translates to the type of carcasses present in an environment. Specifically, we show that carnivore carcasses make up a large proportion of the adult fly’s prior larval diet, which contrasts to what has been reportedly previously for the wild adult fly diet (which consists of mostly herbivore resources). Additionally, we reveal the potential impact of human food on carcasses that were fed on by blow flies, underscoring the human influences on wild animal populations. Our results demonstrate that using SIA in conjunction with other methods (e.g., DNA analysis of flies) can reveal a comprehensive snapshot of the vertebrate community in a terrestrial ecosystem.Item Blow fly stable isotopes reveal larval diet: A case study in community level anthropogenic effects(PLOS, 2021-04) Owings, Charity G.; Gilhooly, William P. III; Picard, Christine J.; Earth Sciences, School of ScienceResponse to human impacts on the environment are typically initiated too late to remediate negative consequences. We present the novel use of stable isotope analysis (SIA) of blow flies to determine human influences on vertebrate communities in a range of human-inhabited environments, from a pristine national park to a dense metropolitan area. The refrain “you are what you eat” applies to the dietary isotope record of all living organisms, and for carrion-breeding blow flies, this translates to the type of carcasses present in an environment. Specifically, we show that carnivore carcasses make up a large proportion of the adult fly’s prior larval diet, which contrasts to what has been reportedly previously for the wild adult fly diet (which consists of mostly herbivore resources). Additionally, we reveal the potential impact of human food on carcasses that were fed on by blow flies, underscoring the human influences on wild animal populations. Our results demonstrate that using SIA in conjunction with other methods (e.g., DNA analysis of flies) can reveal a comprehensive snapshot of the vertebrate community in a terrestrial ecosystem.Item Comparative genomics of the sheep blow fly Lucilia cuprina(Office of the Vice Chancellor for Research, 2016-04-08) Picard, Christine J.; Andere, Anne A.Insects employ different adaptive strategies in response to selective pressures, such as competition for limited resources. Carrion insects provide the ideal case to study these fundamental processes of adaptive evolution due to the intense selective pressures placed on developing larvae with limited food resources, their widespread and abundant distributions, and the presence of geographically distinct populations with specialized adaptations. One adaptation is facultative ectoparasitism, where the insect strikes a healthy animal and feeds on the living flesh, providing a developmental advantage over competitor fly species, but causing significant harm to the host. Lucilia species, which hybridize in the wild and form geographically distinct subpopulations in other regions, are diverging, meaning that we can observe and quantify early biological adaptive processes that govern speciation as they are occurring over hundreds, instead of millions, of years. The draft genome of a North American male Lucilia cuprina fly (carrion breeder) was assembled using a combination of short and long read sequences. This genome is compared to an existing Australian draft genome (ectoparasite) by elucidating genomic structure in key adaptive processes (i.e. immune system evasion) via high-throughput re-sequencing of parasitic specimens, gene prediction and annotation. The carcass colonized by or animal parasitized by both species, with some geographic overlap, provides a semi-controlled environment within the larger context of the ecosystem to sample a large number of individuals with similar life history strategies, allowing for direct comparative studies to elucidate the correlation between structure and function in the genomes of carrion flies – allowing us to understand biological adaptation and speciation.Item Detection and Quantification of Taste and Odor Producing Bacteria in Eagle Creek Reservoir(2019-08) Koltsidou, Ioanna; Picard, Christine J.; Druschel, Gregory K.; Anderson, Gregory G.The accelerated growth of algal blooms in water bodies has caused the increased occurrence of taste and odor (T&O) episodes worldwide. Even though T&O compounds have not been associated with adverse health effects, their presence can have extensive socio-economic impacts in contaminated waters. Eagle Creek Reservoir, a eutrophic water body, which supplies about 80% of Indianapolis drinking water, experiences frequent and sometimes severe odorous outbreaks. The terpenoid bacterial metabolites, 2-methylisoborneol (2-MIB) and geosmin, have been identified as the main compounds contributing to those T&O problems, which occur seasonally when the reservoir receives most of its water and nutrient loads from discharge events. In this study, ECR’s microbial community composition was assessed by a 16S next generation sequencing approach, confirming the presence of the major bacterial phyla of Cyanobacteria, Proteobacteria, Actinobacteria and Bacteroidetes, which are commonly found in freshwater environments. The relative abundance of Cyanobacteria, which are regarded as the main T&O producers in freshwater, followed the fluctuation of 2-MIB and geosmin concentrations closely. Mapping sequence analysis of a metagenomic dataset, successfully recovered the genes responsible for the synthesis of geosmin and 2-MIB, demonstrating the microbial ability for odorous compound production in ECR. Quantification of the geoA and MIBS genes in Cyanobacteria was achieved by the development and application of qPCR assays on water samples collected from the reservoir. A statistically significant positive correlation was found between MIBS gene quantity and MIB concentration for all sampling locations, implying that this assay could potentially be used as a tool for the early prediction of upcoming T&O episodes. The geoA gene detection assay, did not correlate well with geosmin concentrations, suggesting that even though the gene might be present, this does not necessarily mean that it is metabolically active.Item Estimation of the number of contributors of theoretical mixture profiles based on allele counting: Does increasing the number of loci increase success rate of estimates?(Elsevier, 2018-03) Dembinski, Gina M.; Sobieralski, Carl; Picard, Christine J.; Biology, School of ScienceDNA mixtures are more frequently encountered in casework due to increased kit sensitivity, protocols with increased cycle number, and requests for low copy number DNA samples to be tested. Generally, the first step in mixture interpretation is determining the number of contributors, with the most common approach of maximum allele count. Although there are previous studies regarding the accuracy of this approach, none have evaluated the accuracy with the newly expanded U.S. core STR loci. In this work, 4,976,355 theoretical mixture combinations were generated with the PowerPlex® Fusion 6C system which includes 23 autosomal STR loci and three Y-STR loci. The number of contributors could be correctly assumed for 100% two-person and 99.99% three-person mixtures, whereas, four-, five-, and six-person mixtures were correctly assumed in 89.7%, 57.3%, and 7.8% of mixtures, respectively. Y-STR analysis showed the 3 Y-STR markers are only accurate for two-person male mixtures (96.7%). This work demonstrates that maximum allele count using the expanded U.S. core loci is not much improved from previous smaller panels, reiterating that this method is not as accurate beyond three contributors.Item Factors Affecting Species Identifications of Blow Fly Pupae Based upon Chemical Profiles and Multivariate Statistics(MDPI, 2017-04-11) Kranz, William; Carroll, Clinton; Dixon, Darren A.; Goodpaster, John V.; Picard, Christine J.; Chemistry and Chemical Biology, School of ScienceAlternative methods for the identification of species of blow fly pupae have been developed over the years that consist of the analyses of chemical profiles. However, the effect of biotic and abiotic factors that could influence the predictive manner for the tests have not been evaluated. The lipids of blowfly pupae (Cochliomyia macellaria, Lucilia cuprina, Lucilia sericata, and Phormia regina) were extracted in pentane, derivatized, and analyzed by total-vaporization solid phase microextraction gas chromatography-mass spectrometry (TV-SPME GC-MS). Peak areas for 26 compounds were analyzed. Here we evaluated one biotic factor (colonization) on four species of blow flies to determine how well a model produced from lipid profiles of colonized flies predicted the species of flies of offspring of wild-caught flies and found very good species identification following 10 generations of inbreeding. When we evaluated four abiotic factors in our fly rearing protocols (temperature, humidity, pupation substrate, and diet), we found that the ability to assign the chemical profile to the correct species was greatly reduced.Item Female Blow Flies As Vertebrate Resource Indicators(Springer Nature, 2019-07-22) Owings, Charity G.; Banerjee, Aniruddha; Asher, Travis M. D.; Gilhooly, William P.; Tuceryan, Anais; Huffine, Mary; Skaggs, Christine L.; Adebowale, Iyun M.; Manicke, Nicholas E.; Picard, Christine J.; Biology, School of ScienceRapid vertebrate diversity evaluation is invaluable for monitoring changing ecosystems worldwide. Wild blow flies naturally recover DNA and chemical signatures from animal carcasses and feces. We demonstrate the power of blow flies as biodiversity monitors through sampling of flies in three environments with varying human influences: Indianapolis, IN and two national parks (the Great Smoky Mountains and Yellowstone). Dissected fly guts underwent vertebrate DNA sequencing (12S and 16S rRNA genes) and fecal metabolite screening. Integrated Nested Laplace Approximation (INLA) was used to determine the most important abiotic factor influencing fly-derived vertebrate richness. In 720 min total sampling time, 28 vertebrate species were identified, with 42% of flies containing vertebrate resources: 23% DNA, 5% feces, and 14% contained both. The species of blow fly used was not important for vertebrate DNA recovery, however the use of female flies versus male flies directly influenced DNA detection. Temperature was statistically relevant across environments in maximizing vertebrate detection (mean = 0.098, sd = 0.048). This method will empower ecologists to test vertebrate community ecology theories previously out of reach due practical challenges associated with traditional sampling.Item Fine-Grained Zero-Shot Learning with DNA as Side Information(NeurIPS 2021, 2021-09-29) Badirli, Sarkhan; Akata, Zeynep; Mohler, George; Picard, Christine J.; Dundar, Murat; Biology, School of ScienceFine-grained zero-shot learning task requires some form of side-information to transfer discriminative information from seen to unseen classes. As manually annotated visual attributes are extremely costly and often impractical to obtain for a large number of classes, in this study we use DNA as side information for the first time for fine-grained zero-shot classification of species. Mitochondrial DNA plays an important role as a genetic marker in evolutionary biology and has been used to achieve near-perfect accuracy in the species classification of living organisms. We implement a simple hierarchical Bayesian model that uses DNA information to establish the hierarchy in the image space and employs local priors to define surrogate classes for unseen ones. On the benchmark CUB dataset, we show that DNA can be equally promising yet in general a more accessible alternative than word vectors as a side information. This is especially important as obtaining robust word representations for fine-grained species names is not a practicable goal when information about these species in free-form text is limited. On a newly compiled fine-grained insect dataset that uses DNA information from over a thousand species, we show that the Bayesian approach outperforms state-of-the-art by a wide margin.Item Genetic and genomic selection in insects as food and feed(Wageningen Academic, 2021) Eriksson, T.; Picard, Christine J.; Biology, School of ScienceThis review will summarise existing tools and resources and highlight areas of focus for the insects as food and feed industry for the production of insects as alternative protein sources. By applying knowledge gained from other agricultural organisms coupled with the ease of insect population growth and rearing capabilities, and the increase in biotechnological advances, strains optimised for various economic and biological traits should be one of the most attainable goals for researchers and insect farmers alike. We have reviewed strengths (and weaknesses) of various genetic and genomic approaches, and consider the future of insect farming in the context of genetic and genomic selection of insects.
- «
- 1 (current)
- 2
- 3
- »