- Browse by Author
Browsing by Author "Satterthwaite, Theodore D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Greater male than female variability in regional brain structure across the lifespan(Wiley, 2021) Wierenga, Lara M.; Doucet, Gaelle E.; Dima, Danai; Agartz, Ingrid; Aghajani, Moji; Akudjedu, Theophilus N.; Albajes‐Eizagirre, Anton; Alnæs, Dag; Alpert, Kathryn I.; Andreassen, Ole A.; Anticevic, Alan; Asherson, Philip; Banaschewski, Tobias; Bargallo, Nuria; Baumeister, Sarah; Baur‐Streubel, Ramona; Bertolino, Alessandro; Bonvino, Aurora; Boomsma, Dorret I.; Borgwardt, Stefan; Bourque, Josiane; Braber, Anouk; Brandeis, Daniel; Breier, Alan; Brodaty, Henry; Brouwer, Rachel M.; Buitelaar, Jan K.; Busatto, Geraldo F.; Calhoun, Vince D.; Canales‐Rodríguez, Erick J.; Cannon, Dara M.; Caseras, Xavier; Castellanos, Francisco X.; Chaim‐Avancini, Tiffany M.; Ching, Christopher R. K.; Clark, Vincent P.; Conrod, Patricia J.; Conzelmann, Annette; Crivello, Fabrice; Davey, Christopher G.; Dickie, Erin W.; Ehrlich, Stefan; Ent, Dennis; Fisher, Simon E.; Fouche, Jean‐Paul; Franke, Barbara; Fuentes‐Claramonte, Paola; Geus, Eco J. C.; Di Giorgio, Annabella; Glahn, David C.; Gotlib, Ian H.; Grabe, Hans J.; Gruber, Oliver; Gruner, Patricia; Gur, Raquel E.; Gur, Ruben C.; Gurholt, Tiril P.; Haan, Lieuwe; Haatveit, Beathe; Harrison, Ben J.; Hartman, Catharina A.; Hatton, Sean N.; Heslenfeld, Dirk J.; Heuvel, Odile A.; Hickie, Ian B.; Hoekstra, Pieter J.; Hohmann, Sarah; Holmes, Avram J.; Hoogman, Martine; Hosten, Norbert; Howells, Fleur M.; Hulshoff Pol, Hilleke E.; Huyser, Chaim; Jahanshad, Neda; James, Anthony C.; Jiang, Jiyang; Jönsson, Erik G.; Joska, John A.; Kalnin, Andrew J.; Karolinska Schizophrenia Project (KaSP) Consortium; Klein, Marieke; Koenders, Laura; Kolskår, Knut K.; Krämer, Bernd; Kuntsi, Jonna; Lagopoulos, Jim; Lazaro, Luisa; Lebedeva, Irina S.; Lee, Phil H.; Lochner, Christine; Machielsen, Marise W. J.; Maingault, Sophie; Martin, Nicholas G.; Martínez‐Zalacaín, Ignacio; Mataix‐Cols, David; Mazoyer, Bernard; McDonald, Brenna C.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Katie L.; McPhilemy, Genevieve; Meer, Dennis; Menchón, José M.; Naaijen, Jilly; Nyberg, Lars; Oosterlaan, Jaap; Paloyelis, Yannis; Pauli, Paul; Pergola, Giulio; Pomarol‐Clotet, Edith; Portella, Maria J.; Radua, Joaquim; Reif, Andreas; Richard, Geneviève; Roffman, Joshua L.; Rosa, Pedro G. P.; Sacchet, Matthew D.; Sachdev, Perminder S.; Salvador, Raymond; Sarró, Salvador; Satterthwaite, Theodore D.; Saykin, Andrew J.; Serpa, Mauricio H.; Sim, Kang; Simmons, Andrew; Smoller, Jordan W.; Sommer, Iris E.; Soriano‐Mas, Carles; Stein, Dan J.; Strike, Lachlan T.; Szeszko, Philip R.; Temmingh, Henk S.; Thomopoulos, Sophia I.; Tomyshev, Alexander S.; Trollor, Julian N.; Uhlmann, Anne; Veer, Ilya M.; Veltman, Dick J.; Voineskos, Aristotle; Völzke, Henry; Walter, Henrik; Wang, Lei; Wang, Yang; Weber, Bernd; Wen, Wei; West, John D.; Westlye, Lars T.; Whalley, Heather C.; Williams, Steven C. R.; Wittfeld, Katharina; Wolf, Daniel H.; Wright, Margaret J.; Yoncheva, Yuliya N.; Zanetti, Marcus V.; Ziegler, Georg C.; Zubicaray, Greig I.; Thompson, Paul M.; Crone, Eveline A.; Frangou, Sophia; Tamnes, Christian K.; Psychiatry, School of MedicineFor many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.Item Machine Learning for Large-Scale Quality Control of 3D Shape Models in Neuroimaging(Springer Nature, 2017-09) Petrov, Dmitry; Gutman, Boris A.; Yu, Shih-Hua (Julie); van Erp, Theo G.M.; Turner, Jessica A.; Schmaal, Lianne; Veltman, Dick; Wang, Lei; Alpert, Kathryn; Isaev, Dmitry; Zavaliangos-Petropulu, Artemis; Ching, Christopher R.K.; Calhoun, Vince; Glahn, David; Satterthwaite, Theodore D.; Andreasen, Ole Andreas; Borgwardt, Stefan; Howells, Fleur; Groenewold, Nynke; Voineskos, Aristotle; Radua, Joaquim; Potkin, Steven G.; Crespo-Facorro, Benedicto; Tordesillas-Gutirrez, Diana; Shen, Li; Lebedeva, Irina; Spalletta, Gianfranco; Donohoe, Gary; Kochunov, Peter; Rosa, Pedro G.P.; James, Anthony; Dannlowski, Udo; Baune, Berhard T.; Aleman, Andre; Gotlib, Ian H.; Walter, Henrik; Walter, Martin; Soares, Jair C.; Ehrlich, Stefan; Gur, Ruben C.; Doan, N. Trung; Agartz, Ingrid; Westlye, Lars T.; Harrisberger, Fabienne; Richer-Rossler, Anita; Uhlmann, Anne; Stein, Dan J.; Dickie, Erin W.; Pomarol-Clotet, Edith; Fuentes-Claramonte, Paola; Canales-Rodriguez, Erick Jorge; Salvador, Raymond; Huang, Alexander J.; Roiz-Santianez, Roberto; Cong, Shan; Tomyshev, Alexander; Piras, Fabrizio; Vecchio, Daniela; Banaj, Nerisa; Ciullo, Valentina; Hong, Elliot; Busatto, Geraldo; Zanetti, Marcus V.; Serpa, Mauricio H.; Cervenka, Simon; Kelly, Sinead; Grotegerd, Dominik; Sacchet, Matthew D.; Veer, Illya M.; Li, Meng; Wu, Mon-Ju; Irungu, Benson; Walton, Esther; Thompson, Paul M.; Medicine, School of MedicineAs very large studies of complex neuroimaging phenotypes become more common, human quality assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so far been made to address this issue with machine learning. In this work, we optimize predictive models of quality for meshes representing deep brain structure shapes. We use standard vertex-wise and global shape features computed homologously across 19 cohorts and over 7500 human-rated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees classifiers to detect meshes of failing quality. Our models generalize across datasets and diseases, reducing human workload by 30-70%, or equivalently hundreds of human rater hours for datasets of comparable size, with recall rates approaching inter-rater reliability.