- Browse by Author
Browsing by Author "Stull, Natalie D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Divergent compensatory responses to high-fat diet between C57BL6/J and C57BLKS/J inbred mouse strains(American Physiological Society (APS), 2013-12-15) Sims, Emily K.; Hatanaka, Masayuki; Morris, David L.; Tersey, Sarah A.; Kono, Tatsuyoshi; Chaudry, Zunaira Z.; Day, Kathleen H.; Moss, Dan R.; Stull, Natalie D.; Mirmira, Raghavendra G.; Evans-Molina, Carmella; Department of Medicine, IU School of MedicineImpaired glucose tolerance (IGT) and type 2 diabetes (T2DM) are polygenic disorders with complex pathophysiologies; recapitulating them with mouse models is challenging. Despite 70% genetic homology, C57BL/6J (BL6) and C57BLKS/J (BLKS) inbred mouse strains differ in response to diet- and genetic-induced obesity. We hypothesized these differences would yield insight into IGT and T2DM susceptibility and response to pharmacological therapies. To this end, male 8-wk-old BL6 and BLKS mice were fed normal chow (18% kcal from fat), high-fat diet (HFD; 42% kcal from fat), or HFD supplemented with the PPARγ agonist pioglitazone (PIO; 140 mg PIO/kg diet) for 16 wk. Assessments of body composition, glucose homeostasis, insulin production, and energy metabolism, as well as histological analyses of pancreata were undertaken. BL6 mice gained weight and adiposity in response to HFD, leading to peripheral insulin resistance that was met with increased β-cell proliferation and insulin production. By contrast, BLKS mice responded to HFD by restricting food intake and increasing activity. These behavioral responses limited weight gain and protected against HFD-induced glucose intolerance, which in this strain was primarily due to β-cell dysfunction. PIO treatment did not affect HFD-induced weight gain in BL6 mice, and decreased visceral fat mass, whereas in BLKS mice PIO increased total fat mass without improving visceral fat mass. Differences in these responses to HFD and effects of PIO reflect divergent human responses to a Western lifestyle and underscore the careful consideration needed when choosing mouse models of diet-induced obesity and diabetes treatment.Item Mouse and human islets survive and function after coating by biosilicification(American Physiological Society, 2013-11-15) Jaroch, David B.; Lu, Jing; Madangopal, Rajtarun; Stull, Natalie D.; Stensberg, Matthew; Shi, Jin; Kahn, Jennifer L.; Herrera-Perez, Ruth; Zeitchek, Michael; Sturgis, Jennifer; Robinson, J. Paul; Yoder, Mervin C.; Porterfield, D. Marshall; Mirmira, Raghavendra; Rickus, Jenna L.; Medicine, School of MedicineInorganic materials have properties that can be advantageous in bioencapsulation for cell transplantation. Our aim was to engineer a hybrid inorganic/soft tissue construct by inducing pancreatic islets to grow an inorganic shell. We created pancreatic islets surrounded by porous silica, which has potential application in the immunoprotection of islets in transplantation therapies for type 1 diabetes. The new method takes advantage of the islet capsule surface as a template for silica formation. Mouse and human islets were exposed to medium containing saturating silicic acid levels for 9-15 min. The resulting tissue constructs were then cultured for up to 4 wk under normal conditions. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to monitor the morphology and elemental composition of the material at the islet surface. A cytokine assay was used to assess biocompatibility with macrophages. Islet survival and function were assessed by confocal microscopy, glucose-stimulated insulin release assays, oxygen flux at the islet surface, expression of key genes by RT-PCR, and syngeneic transplant into diabetic mice.Item Syntaxin 4 up-regulation increases efficiency of insulin release in pancreatic islets from humans with and without type 2 diabetes mellitus(The Endocrine Society, 2014-05) Oh, Eunjin; Stull, Natalie D.; Mirmira, Raghavendra G.; Thurmond, Debbie C.; Department of Pediatrics, IU School of MedicineCONTEXT: Evidence suggests that dysfunctional β-cell insulin release precedes type 1 and type 2 diabetes (T1D and T2D, respectively) and that enhancing the efficiency of insulin release from pancreatic islet β-cells may delay/prevent these diseases. We took advantage of the rare opportunity to test this paradigm using islets from human type 2 diabetic individuals. OBJECTIVES: Insulin release capacity is limited by the abundance of fusogenic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Because enrichment of Syntaxin 4, a plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein, enhances β-cell function in mice, we investigated its potential to restore functional insulin secretion to human diabetic islets. DESIGN: Human islets from type 2 diabetic and healthy individuals transduced to overexpress Syntaxin 4 were examined by perifusion analysis. Streptozotocin-induced diabetic recipient mice transplanted with Syntaxin 4-enriched or normal islets were assessed for rescue of diabetes in vivo. RESULTS: Syntaxin 4 up-regulation in human islets enhanced β-cell function by approximately 2-fold in each phase of secretion. Syntaxin 4 abundance in type 2 diabetes islets was approximately 70% reduced, and replenishment significantly improved insulin secretion. Islets from Syntaxin 4 overexpressing transgenic mice more effectively attenuated streptozotocin-induced diabetes than did control islets. CONCLUSIONS: These data show that the addition of just Syntaxin 4 is sufficient to significantly improve insulin secretory function to human type 2 diabetes islets retaining low levels of residual function and provide proof of concept that by building a more efficient β-cell with up-regulated Syntaxin 4, fewer islets may be required per patient, clearing a major barrier in transplantation therapy.CONTEXT: Evidence suggests that dysfunctional β-cell insulin release precedes type 1 and type 2 diabetes (T1D and T2D, respectively) and that enhancing the efficiency of insulin release from pancreatic islet β-cells may delay/prevent these diseases. We took advantage of the rare opportunity to test this paradigm using islets from human type 2 diabetic individuals. OBJECTIVES: Insulin release capacity is limited by the abundance of fusogenic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Because enrichment of Syntaxin 4, a plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein, enhances β-cell function in mice, we investigated its potential to restore functional insulin secretion to human diabetic islets. DESIGN: Human islets from type 2 diabetic and healthy individuals transduced to overexpress Syntaxin 4 were examined by perifusion analysis. Streptozotocin-induced diabetic recipient mice transplanted with Syntaxin 4-enriched or normal islets were assessed for rescue of diabetes in vivo. RESULTS: Syntaxin 4 up-regulation in human islets enhanced β-cell function by approximately 2-fold in each phase of secretion. Syntaxin 4 abundance in type 2 diabetes islets was approximately 70% reduced, and replenishment significantly improved insulin secretion. Islets from Syntaxin 4 overexpressing transgenic mice more effectively attenuated streptozotocin-induced diabetes than did control islets. CONCLUSIONS: These data show that the addition of just Syntaxin 4 is sufficient to significantly improve insulin secretory function to human type 2 diabetes islets retaining low levels of residual function and provide proof of concept that by building a more efficient β-cell with up-regulated Syntaxin 4, fewer islets may be required per patient, clearing a major barrier in transplantation therapy.