- Browse by Author
Browsing by Author "Wireman, Randall"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Combined inhibition of Ref‐1 and STAT3 leads to synergistic tumour inhibition in multiple cancers using 3D and in vivo tumour co‐culture models(Wiley, 2021-01) Caston, Rachel A.; Shah, Fenil; Starcher, Colton L.; Wireman, Randall; Babb, Olivia; Grimard, Michelle; McGeown, Jack; Armstrong, Lee; Tong, Yan; Pili, Roberto; Rupert, Joseph; Zimmers, Teresa A.; Elmi, Adily N.; Pollok, Karen E.; Motea, Edward A.; Kelley, Mark R.; Fishel, Melissa L.; Pediatrics, School of MedicineWith a plethora of molecularly targeted agents under investigation in cancer, a clear need exists to understand which pathways can be targeted simultaneously with multiple agents to elicit a maximal killing effect on the tumour. Combination therapy provides the most promise in difficult to treat cancers such as pancreatic. Ref‐1 is a multifunctional protein with a role in redox signalling that activates transcription factors such as NF‐κB, AP‐1, HIF‐1α and STAT3. Formerly, we have demonstrated that dual targeting of Ref‐1 (redox factor‐1) and STAT3 is synergistic and decreases cell viability in pancreatic cancer cells. Data presented here extensively expands upon this work and provides further insights into the relationship of STAT3 and Ref‐1 in multiple cancer types. Using targeted small molecule inhibitors, Ref‐1 redox signalling was blocked along with STAT3 activation, and tumour growth evaluated in the presence and absence of the relevant tumour microenvironment. Our study utilized qPCR, cytotoxicity and in vivo analysis of tumour and cancer‐associated fibroblasts (CAF) response to determine the synergy of Ref‐1 and STAT3 inhibitors. Overall, pancreatic tumours grown in the presence of CAFs were sensitized to the combination of STAT3 and Ref‐1 inhibition in vivo. In vitro bladder and pancreatic cancer demonstrated the most synergistic responses. By disabling both of these important pathways, this combination therapy has the capacity to hinder crosstalk between the tumour and its microenvironment, leading to improved tumour response.Item Discovery of Macrocyclic Inhibitors of Apurinic/Apyrimidinic Endonuclease 1(ACS, 2019) Trilles, Richard; Beglov, Dmitri; Chen, Qiujia; He, Hongzhen; Wireman, Randall; Reed, April; Chennamadhavuni, Spandan; Panek, James S.; Brown, Lauren E.; Vajda, Sandor; Porco, John A., Jr.; Kelley, Mark R.; Georgiadis, Millie M.; Biochemistry and Molecular Biology, School of MedicineApurinic/apyrimidinic endonuclease 1 (APE1) is an essential base excision repair enzyme that is upregulated in a number of cancers, contributes to resistance of tumors treated with DNA-alkylating or -oxidizing agents, and has recently been identified as an important therapeutic target. In this work, we identified hot spots for binding of small organic molecules experimentally in high resolution crystal structures of APE1 and computationally through the use of FTMAP analysis (http://ftmap.bu.edu/). Guided by these hot spots, a library of drug-like macrocycles was docked and then screened for inhibition of APE1 endonuclease activity. In an iterative process, hot-spot-guided docking, characterization of inhibition of APE1 endonuclease, and cytotoxicity of cancer cells were used to design next generation macrocycles. To assess target selectivity in cells, selected macrocycles were analyzed for modulation of DNA damage. Taken together, our studies suggest that macrocycles represent a promising class of compounds for inhibition of APE1 in cancer cells.Item Small molecule activation of apurinic/apyrimidinic endonuclease 1 reduces DNA damage induced by cisplatin in cultured sensory neurons(Elsevier, 2016-05) Georgiadis, Millie M.; Chen, Qiujia; Meng, Jingwei; Guo, Chunlu; Wireman, Randall; Reed, April; Vasko, Michael R.; Kelley, Mark R.; Department of Biochemistry & Molecular Biology, IU School of MedicineAlthough chemotherapy-induced peripheral neuropathy (CIPN) affects approximately 5-60% of cancer patients, there are currently no treatments available in part due to the fact that the underlying causes of CIPN are not well understood. One contributing factor in CIPN may be persistence of DNA lesions resulting from treatment with platinum-based agents such as cisplatin. In support of this hypothesis, overexpression of the base excision repair (BER) enzyme, apurinic/apyrimidinic endonuclease 1 (APE1), reduces DNA damage and protects cultured sensory neurons treated with cisplatin. Here, we address stimulation of APE1's endonuclease through a small molecule, nicorandil, as a means of mimicking the beneficial effects observed for overexpression of APE1. Nicorandil, was identified through high-throughput screening of small molecule libraries and found to stimulate APE1 endonuclease activity by increasing catalytic efficiency approximately 2-fold. This stimulation is primarily due to an increase in kcat. To prevent metabolism of nicorandil, an approved drug in Europe for the treatment of angina, cultured sensory neurons were pretreated with nicorandil and daidzin, an aldehyde dehydrogenase 2 inhibitor, resulting in decreased DNA damage but not altered transmitter release by cisplatin. This finding suggests that activation of APE1 by nicorandil in cisplatin-treated cultured sensory neurons does not imbalance the BER pathway in contrast to overexpression of the kinetically faster R177A APE1. Taken together, our results suggest that APE1 activators can be used to reduce DNA damage induced by cisplatin in cultured sensory neurons, although further studies will be required to fully assess their protective effects.