- Browse by Subject
Browsing by Subject "Alcohol"
Now showing 1 - 10 of 75
Results Per Page
Sort Options
Item Aberrations in Incentive Learning and Responding to Heroin in Male Rats After Adolescent or Adult Chronic Binge-Like Alcohol Exposure(Wiley, 2020-06) Galaj, Ewa; Barrera, Eddy; Morris, Debra; Ma, Yao-Ying; Ranaldi, Robert; Pharmacology and Toxicology, School of MedicineBackground and purpose: Binge drinking is a serious problem among adolescents and young adults despite its adverse consequences on the brain and behavior. One area that remains poorly understood concerns the impact of chronic intermittent ethanol (CIE) exposure on incentive learning. Methods: Here, we examined the effects of CIE exposure during different developmental stages on conditioned approach and conditioned reward learning in rats experiencing acute or protracted withdrawal from alcohol. Two or 21 days after adolescent or adult CIE exposure, male rats were exposed to pairings of a light stimulus (CS) and food pellets for 3 consecutive daily sessions (30 CS-food pellet pairings per session). This was followed by conditioned approach testing measuring responses (food trough head entries) to the CS-only presentations and by conditioned reward testing measuring responses on a lever producing the CS and on another producing a tone. We then measured behavioral sensitization to repeated injections of heroin (2 mg/kg/d for 9 days). Results: Adolescent and adult alcohol-treated rats showed significantly impaired conditioned reward learning regardless of withdrawal period (acute or prolonged). We found no evidence of changes to conditioned approach learning after adolescent or adult exposure to CIE. Finally, in addition to producing long-term impairments in incentive learning, CIE exposure enhanced locomotor activity in response to heroin and had no effect on behavioral sensitization to heroin regardless of age and withdrawal period. Conclusions: Our work sets a framework for identifying CIE-induced alterations in incentive learning and inducing susceptibility to subsequent opioid effects.Item Activation of extrasynaptic δ-GABAA receptors globally or within the posterior-VTA has estrous-dependent effects on consumption of alcohol and estrous-independent effects on locomotion(Elsevier, 2017-09) Melón, Laverne C.; Nolan, Zachary T.; Colar, Delphine; Moore, Eileen M.; Boehm II, Stephen L.; Psychology, School of ScienceRecent reports support higher than expected rates of binge alcohol consumption among women and girls. Unfortunately, few studies have assessed the mechanisms underlying this pattern of intake in females. Studies in males suggest that alcohol concentrations relevant to the beginning stages of binge intoxication may selectively target tonic GABAergic inhibition mediated by GABAA receptor subtypes expressing the δ-subunit protein (δ-GABAARs). Indeed, administration of agonists that interact with these δ-GABAARs prior to alcohol access can abolish binge drinking behavior in male mice. These δ-GABAARs have also been shown to exhibit estrous-dependent plasticity in regions relevant to drug taking behavior, like the hippocampus and periaqueductal gray. The present experiments were designed to determine whether the estrous cycle would alter binge drinking, or our ability to modulate this pattern of alcohol use with THIP, an agonist with high selectivity and efficacy at δ-GABAARs. Using the Drinking-in-the-Dark (DID) binge-drinking model, regularly cycling female mice were given 2h of daily access to alcohol (20%v/v). Vaginal cytology or vaginal impedance was assessed after drinking sessions to track estrous status. There was no fluctuation in binge drinking associated with the estrous cycle. Both Intra-posterior-VTA administration of THIP and systemic administration of the drug was also associated with an estrous cycle dependent reduction in drinking behavior. Pre-treatment with finasteride to inhibit synthesis of 5α-reduced neurosteroids did not disrupt THIP's effects. Analysis of δ-subunit mRNA from posterior-VTA enriched tissue samples revealed that expression of this GABAA receptor subunit is elevated during diestrus in this region. Taken together, these studies demonstrate that δGABAARs in the VTA are an important target for binge drinking in females and confirm that the estrous cycle is an important moderator of the pharmacology of this GABAA receptor subtype.Item Acute drug effects on habitual and non-habitual responding in crossed high alcohol preferring mice(Springer Nature, 2018-07) Houck, Christa A.; Grahame, Nicholas J.; Psychology, School of ScienceRATIONALE: Drug reward plays a central role in acquiring drug-seeking behavior. However, subjects may continue using drugs despite negative consequences because self-administration becomes habitual, and divorced from outcome values. Although a history of drug and alcohol use expedite habit acquisition, and in spite of the fact that self-administration leads to intoxication, the acute effects of drugs on habitual responding are not well understood. OBJECTIVES: We sought to observe how acute ethanol and amphetamine affect the balance between habitual and goal-directed behavior, as measured by a fluid-reinforced operant conditioning task. METHODS: Selectively bred crossed high-alcohol-preferring (cHAP) mice were trained on an operant conditioning task reinforced on a variable interval schedule with 1% banana solution, which was subsequently devalued via LiCl pairing in half the animals. Ethanol (1.0 g/kg), amphetamine (2.0 mg/kg), or saline was administered prior to a post-devaluation test. RESULTS: Overall, mice showed habitual behavior, but when divided into high- or low-responding groups based on training response rates, saline-treated, low-responding animals devalued, while saline-treated high-responding animals did not. Furthermore, amphetamine elicited devaluation even in high-responding animals, while ethanol prevented devaluation even in low-responding animals. CONCLUSIONS: These data show that ethanol shifts animals toward behaving habitually. This may illuminate why alcohol-intoxicated individuals display impaired judgment about the relative merits of drinking, and potentially serve as a mechanism by which intoxicated subjects resume previously devalued behaviors, such as comorbid drug use. These findings also show that high variable interval response rates facilitate a shift from goal-directed to habitual behavior.Item Adenosinergic regulation of binge-like ethanol drinking and associated locomotor effects in male C57BL/6J mice(Elsevier, 2015-08) Fritz, Brandon M.; Boehm II, Stephen L.; Department of Psychology, School of ScienceWe recently observed that the addition of caffeine (a nonselective adenosine receptor antagonist) to a 20% ethanol solution significantly altered the intoxication profile of male C57BL/6J (B6) mice induced by voluntary binge-like consumption in the 'Drinking-in-the-Dark' (DID) paradigm. In the current study, the roles of A1 and A2A adenosine receptor subtypes, specifically, in binge-like ethanol consumption and associated locomotor effects were explored. Adult male B6 mice (PND 60-70) were allowed to consume 20% ethanol (v/v) or 2% sucrose (w/v) for 6days via DID. On day 7, mice received a systemic administration (i.p.) of the A1 antagonist DPCPX (1, 3, 6mg/kg), the A2A antagonist MSX-3 (1, 2, 4mg/kg), or vehicle immediately prior to fluid access in DID. Antagonism of the A1 receptor via DPCPX was found to dose-dependently decrease binge-like ethanol intake and associated blood ethanol concentrations (p's<0.05), although no effect was observed on sucrose intake. Antagonism of A2A had no effect on ethanol or sucrose consumption, however, MSX-3 elicited robust locomotor stimulation in mice consuming either solution (p's<0.05). Together, these findings suggest unique roles for the A1 and A2A adenosine receptor subtypes in binge-like ethanol intake and its associated locomotor effects.Item Alcohol exposure decreases osteopontin expression during fracture healing and osteopontin-mediated mesenchymal stem cell migration in vitro(BMC, 2018-04-27) Natoli, Roman M.; Yu, Henry; Meislin, Megan Conti-Mica; Abbasnia, Pegah; Roper, Philip; Vuchkovska, Aleksandra; Xiao, Xianghui; Stock, Stuart R.; Callaci, John J.; Orthopaedic Surgery, School of MedicineBACKGROUND: Alcohol consumption is a risk factor for impaired fracture healing, though the mechanism(s) by which this occurs are not well understood. Our laboratory has previously shown that episodic alcohol exposure of rodents negatively affects fracture callus development, callus biomechanics, and cellular signaling which regulates stem cell differentiation. Here, we examine whether alcohol alters chemokine expression and/or signaling activity in the mouse fracture callus during early fracture healing. METHODS: A mouse model for alcohol-impaired tibia fracture healing was utilized. Early fracture callus was examined for alcohol-effects on tissue composition, expression of chemokines involved in MSC migration to the fracture site, and biomechanics. The effects of alcohol on MSC migration and cell adhesion receptors were examined in an in vitro system. RESULTS: Mice exposed to alcohol showed decreased evidence of external callus formation, decreased callus-related osteopontin (OPN) expression levels, and decreased biomechanical stiffness. Alcohol exposure decreased rOPN-mediated MSC migration and integrin β1 receptor expression in vitro. CONCLUSIONS: The effects of alcohol exposure demonstrated here on fracture callus-associated OPN expression, rOPN-mediated MSC migration in vitro, and MSC integrin β1 receptor expression in vitro have not been previously reported. Understanding the effects of alcohol exposure on the early stages of fracture repair may allow timely initiation of treatment to mitigate the long-term complications of delayed healing and/or fracture non-union.Item Alcohol exposure disrupts mu opioid receptor-mediated long-term depression at insular cortex inputs to dorsolateral striatum(Nature Publishing group, 2018-04-03) Muñoz, Braulio; Fritz, Brandon M.; Yin, Fuqin; Atwood, Brady K.; Psychiatry, School of MedicineDrugs of abuse, including alcohol, ablate the expression of specific forms of long-term synaptic depression (LTD) at glutamatergic synapses in dorsal striatum (DS), a brain region involved in goal-directed and habitual behaviors. This loss of LTD is associated with altered DS-dependent behavior. Given the role of the µ-opioid receptor (MOR) in behavioral responding for alcohol, we explored the impact of alcohol on various forms of MOR-mediated synaptic depression that we find are differentially expressed at specific DS synapses. Corticostriatal MOR-mediated LTD (mOP-LTD) in the dorsolateral striatum occurs exclusively at inputs from anterior insular cortex and is selectively disrupted by in vivo alcohol exposure. Alcohol has no effect on corticostriatal mOP-LTD in dorsomedial striatum, thalamostriatal MOR-mediated short-term depression, or mOP-LTD of cholinergic interneuron-driven glutamate release. Disrupted mOP-LTD at anterior insular cortex–dorsolateral striatum synapses may therefore be a key mechanism of alcohol-induced neuroadaptations involved in the development of alcohol use disorders., µ-opioid receptors (MOR) are known to modulate the reward effects of drugs of abuse, and MOR activation induces long-term depression (LTD) at striatal synapses. Here the authors show that alcohol exposure disrupts MOR-induced LTD only at specific cortical inputs to the striatum.Item Alcohol intake is associated with increased risk of squamous cell carcinoma of the skin: three US prospective cohort studies(Taylor & Francis, 2016-05) Siiskonen, Satu; Han, Jiali; Li, Tricia; Cho, Eunyoung; Nijsten, Tamar; Qureshi, Abrar; Department of Epidemiology, School of Public HealthThe association between alcohol intake and cutaneous squamous cell carcinoma (cSCC) is unclear. We studied the association between alcohol intake and incident invasive cSCC in three cohorts of women and men with repeated assessments of alcohol intake in the US. Information on alcohol intake was collected repeatedly during follow-up. Cumulative average of alcohol intakes was used. Multivariable Cox proportional hazards models with time-dependent exposure were used to estimate relative risks (RRs) and 95% confidence intervals, followed by a meta-analysis. During a follow-up of 4,234,416 person-years, 2,938 cSCC were identified. Alcohol intake was associated with an increased risk of cSCC with a dose-response relationship. Each additional drink (12.8 gram of alcohol) per day was associated with a 22% increased risk of cSCC (RR 1.22, 95% confidence interval: 1.13-1.31). White wine consumption of ≥5 times/wk was associated with an increased risk of cSCC (RR 1.31, 95% confidence interval: 1.09-1.59). We found no increased risk of cSCC with other alcoholic beverages. The population-attributable risk associated with alcohol intake of ≥20 grams/d was 3% of cSCCs. In conclusion, alcohol intake was associated with an elevated risk of cSCC. Among alcoholic beverages, white wine was associated with cSCC.Item Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism(Springer Nature, 2019-02-14) Kapoor, Manav; Wang, Jen-Chyong; Farris, Sean P.; Liu, Yunlong; McClintick, Jeanette; Gupta, Ishaan; Meyers, Jacquelyn L.; Bertelsen, Sarah; Chao, Michael; Nurnberger, John; Tischfield, Jay; Harari, Oscar; Zeran, Li; Hesselbrock, Victor; Bauer, Lance; Raj, Towfique; Porjesz, Bernice; Agrawal, Arpana; Foroud, Tatiana; Edenberg, Howard J.; Mayfield, R. Dayne; Goate, Alison; Medical and Molecular Genetics, School of MedicineAlcohol exposure triggers changes in gene expression and biological pathways in human brain. We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and 73 controls of European descent, and identified 129 genes that showed altered expression (FDR < 0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45 (GADD45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related to calcium signaling pathways and showed significant downregulation of these pathways, as well as enrichment for biological processes related to nicotine response and opioid signaling. A second module (brown4) showed significant upregulation of pathways related to immune signaling. Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for genetic associations with alcohol dependence and alcohol consumption in large genome-wide studies included in the Psychiatric Genetic Consortium and the UK Biobank's alcohol consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified genes and biological pathways that could provide insight for identifying therapeutic targets for alcohol dependence.Item Assessment of Ethanol and Nicotine Interactions in the Rat Model: Pharmacotherapeutics, Adolescence, and the Mesolimbic System(2019-09) Waeiss, Robert Aaron; Truitt, William A.; Hudmon, Andy; Johnson, Philip L.; McBride, William J.; Rodd, Zachary A.Alcohol use disorder (AUD) and nicotine dependence often result in serious health problems and are top contributors to preventable deaths worldwide. Co-addiction to alcohol and nicotine is the most common form of polysubstance abuse. Epidemiological studies indicate that more than 80% of individuals diagnosed with AUD concurrently use nicotine. The prevalence of alcohol and nicotine comorbidity may stem from interconnected mechanisms underlying these disorders. A better understanding of how these drugs interact and the biological basis behind the high comorbidity rates could generate key targets for the development of more effective treatments for AUD and nicotine dependence. The following experiments utilized four similar overall groups consisting of vehicle, ethanol (EtOH), nicotine (NIC), and EtOH+NIC. Chapter Two investigated the efficacy of naltrexone and varenicline, the pharmacological ‘gold standards’ for treating AUD and nicotine dependence, on voluntary drug intake by rats selectively bred for high EtOH drinking. The results indicated that the standard treatments for AUD and nicotine dependence were effective at reducing consumption of the targeted reinforcer but neither reduced EtOH+NIC co-use/abuse. Chapter Three examined the effects of peri-adolescent EtOH drinking on the ability of NIC infused into the posterior ventral tegmental area (pVTA) to stimulate dopamine release within the nucleus accumbens (NAc) shell during adulthood. The results suggest a cross-sensitization to NIC produced by peri-adolescent EtOH consumption demonstrated by a leftward and upward shift in the dose response curve. Chapter Four investigated the effects of intra-pVTA infusions on NAc shell neurochemistry, EtOH reward within the NAc shell, and the role of brain-derived neurotrophic factor (BDNF) on EtOH reward within that region. The data indicated that only EtOH+NIC significantly increased glutamate, dopamine, and BDNF in the NAc shell. Repeated pretreatment with EtOH+NIC also enhanced EtOH reward in the NAc shell and BDNF infusions were sufficient to recapitulate these findings. Collectively, the data indicate that concurrent exposure to EtOH and NIC results in unique neuroadaptations that promote future drug use. The failure to develop effective pharmacotherapeutics for AUD or nicotine dependence could be associated with examining potential targets in models that fail to reflect the impact of polydrug exposure.Item Associations between regional brain physiology and trait impulsivity, motor inhibition, and impaired control over drinking(Elsevier, 2015-08-30) Weafer, Jessica; Dzemidzic, Mario; Eiler, William J. A. II; Oberlin, Brandon G.; Wang, Yang; Kareken, David A.; Department of Neurology, IU School of MedicineTrait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n = 117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), as well as measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n = 40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems.