- Browse by Subject
Browsing by Subject "Autoimmunity"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Antiretroviral Therapy Normalizes Autoantibody Profile of HIV Patients by Decreasing CD33⁺CD11b⁺HLA-DR⁺ Cells: A Cross-Sectional Study(Ovid Technologies (Wolters Kluwer) - Lippincott Williams & Wilkins, 2016-04) Meng, Zhefeng; Du, Ling; Hu, Ningjie; Byrd, Daniel; Amet, Tohti; Desai, Mona; Shepherd, Nicole; Lan, Jie; Han, Renzhi; Yu, Qigui; Department of Microbiology & Immunology, IU School of MedicineAutoimmune manifestations are common in human immunodeficiency virus (HIV) patients. However, the autoantibody spectrum associated with HIV infection and the impact of antiretroviral therapy (ART) remains to be determined. The plasma autoantibody spectrum for HIV patients was characterized by protein microarrays containing 83 autoantigens and confirmed by enzyme-linked immunosorbent assay (ELISA). Regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) were analyzed by flow cytometry and their effects on autoantibodies production were determined by B cell ELISpot. Higher levels of autoantibody and higher prevalence of elevated autoantibodies were observed in ART-naive HIV patients compared to healthy subjects and HIV patients on ART. The highest frequency of CD33(+)CD11b(+)HLA-DR(+) cells was observed in ART-naive HIV patients and was associated with the quantity of elevated autoantibodies. In addition, CD33(+)CD11b(+)HLA-DR(+) cells other than Tregs or MDSCs boost the B cell response in a dose-dependent manner by in vitro assay. In summary, HIV infection leads to elevation of autoantibodies while ART suppresses the autoimmune manifestation by decreasing CD33(+)CD11b(+)HLA-DR(+) cells in vivo.The roles of CD33(+)CD11b(+)HLA-DR(+) cells on disease progression in HIV patients needs further assessment.Item B Quiet: Autoantigen-Specific Strategies to Silence Raucous B Lymphocytes and Halt Cross-Talk with T Cells in Type 1 Diabetes(MDPI, 2021-01-06) Felton, Jamie L.; Conway, Holly; Bonami, Rachel H.; Pediatrics, School of MedicineIslet autoantibodies are the primary biomarkers used to predict type 1 diabetes (T1D) disease risk. They signal immune tolerance breach by islet autoantigen-specific B lymphocytes. T-B lymphocyte interactions that lead to expansion of pathogenic T cells underlie T1D development. Promising strategies to broadly prevent this T-B crosstalk include T cell elimination (anti-CD3, teplizumab), B cell elimination (anti-CD20, rituximab), and disruption of T cell costimulation/activation (CTLA-4/Fc fusion, abatacept). However, global disruption or depletion of immune cell subsets is associated with significant risk, particularly in children. Therefore, antigen-specific therapy is an area of active investigation for T1D prevention. We provide an overview of strategies to eliminate antigen-specific B lymphocytes as a means to limit pathogenic T cell expansion to prevent beta cell attack in T1D. Such approaches could be used to prevent T1D in at-risk individuals. Patients with established T1D would also benefit from such targeted therapies if endogenous beta cell function can be recovered or islet transplant becomes clinically feasible for T1D treatment.Item Control of inflammation, helper T cell responses and regulatory T cell function by Bcl6(2014-01-13) Sawant, Deepali Vijay; Dent, Alexander L.; Kaplan, Mark H.; Blum, Janice Sherry, 1957-; Touloukian, Christopher E.Regulatory T (Treg) cells represent an important layer of immune-regulation indispensible for curtailing exuberant inflammatory responses and maintaining self-tolerance. Treg cells have translational potential for autoimmunity, inflammation, transplantation and cancer. Therefore, delineating the molecular underpinnings underlying the development, suppressor function and stability of Tregs is particularly warranted. The transcriptional repressor Bcl6 is a critical arbiter of helper T cell fate, promoting the follicular helper (Tfh) lineage while repressing Th1, Th2 and Th17 differentiation. Bcl6-deficient mice develop a spontaneous and severe Th2-type inflammatory disease including myocarditis and pulmonary vasculitis, suggesting a potential role for Bcl6 in Treg cell function. Bcl6-deficient Treg cells are competent in controlling Th1 responses, but fail to control Th2 inflammation in an airway allergen model. Importantly, mice with Bcl6 deleted specifically in the Treg lineage develop severe myocarditis, thus highlighting a critical role for Bcl6 in Treg-mediated control of Th2 inflammation. Bcl6-deficient Tregs display an intrinsic increase in Th2 genes and microRNA-21 (miR-21) expression. MiR-21 is a novel Bcl6 gene target in T cells and ectopic expression of miR-21 directs Th2 differentiation in non-polarized T cells. MiR-21 is up-regulated in mouse models of airway inflammation and also in human patients with eosinophilic esophagitis and asthma. Thus, miR-21 is a clinically relevant biomarker for Th2-type pathologies. Our results define a key function for Bcl6 in repressing Gata3 function and miR-21 expression in Tregs, and provide greater understanding of the control of Th2 inflammatory responses by Treg cells.Item CXCR5+PD-1+ follicular helper CD8 T cells control B cell tolerance(Springer Nature, 2019-09-27) Chen, Yuhong; Yu, Mei; Zheng, Yongwei; Fu, Guoping; Xin, Gang; Zhu, Wen; Luo, Lan; Burns, Robert; Li, Quan-Zhen; Dent, Alexander L.; Zhu, Nan; Cui, Weiguo; Malherbe, Laurent; Wen, Renren; Wang, Demin; Microbiology and Immunology, School of MedicineMany autoimmune diseases are characterized by the production of autoantibodies. The current view is that CD4+ T follicular helper (Tfh) cells are the main subset regulating autoreactive B cells. Here we report a CXCR5+PD1+ Tfh subset of CD8+ T cells whose development and function are negatively modulated by Stat5. These CD8+ Tfh cells regulate the germinal center B cell response and control autoantibody production, as deficiency of Stat5 in CD8 T cells leads to an increase of CD8+ Tfh cells, resulting in the breakdown of B cell tolerance and concomitant autoantibody production. CD8+ Tfh cells share similar gene signatures with CD4+ Tfh, and require CD40L/CD40 and TCR/MHCI interactions to deliver help to B cells. Our study thus highlights the diversity of follicular T cell subsets that contribute to the breakdown of B-cell tolerance.Item The Influence of Type 2 Diabetes–Associated Factors on Type 1 Diabetes(American Diabetes Association, 2019-08-01) Redondo, Maria J.; Evans-Molina, Carmella; Steck, Andrea K.; Atkinson, Mark A.; Sosenko, Jay; Pediatrics, School of MedicineCurrent efforts to prevent progression from islet autoimmunity to type 1 diabetes largely focus on immunomodulatory approaches. However, emerging data suggest that the development of diabetes in islet autoantibody–positive individuals may also involve factors such as obesity and genetic variants associated with type 2 diabetes, and the influence of these factors increases with age at diagnosis. Although these factors have been linked with metabolic outcomes, particularly through their impact on β-cell function and insulin sensitivity, growing evidence suggests that they might also interact with the immune system to amplify the autoimmune response. The presence of factors shared by both forms of diabetes contributes to disease heterogeneity and thus has important implications. Characteristics that are typically considered to be nonimmune should be incorporated into predictive algorithms that seek to identify at-risk individuals and into the designs of trials for disease prevention. The heterogeneity of diabetes also poses a challenge in diagnostic classification. Finally, after clinically diagnosing type 1 diabetes, addressing nonimmune elements may help to prevent further deterioration of β-cell function and thus improve clinical outcomes. This Perspectives in Care article highlights the role of type 2 diabetes–associated genetic factors (e.g., gene variants at transcription factor 7-like 2 [TCF7L2]) and obesity (via insulin resistance, inflammation, β-cell stress, or all three) in the pathogenesis of type 1 diabetes and their impacts on age at diagnosis. Recognizing that type 1 diabetes might result from the sum of effects from islet autoimmunity and type 2 diabetes–associated factors, their interactions, or both affects disease prediction, prevention, diagnosis, and treatment.Item Mucosal Administration of Collagen V Ameliorates the Atherosclerotic Plaque Burden by Inducing Interleukin 35-dependent Tolerance(American Society for Biochemistry & Molecular Biology, 2016-02-12) Park, Arick C.; Huang, Guorui; Jankowska-Gan, Ewa; Massoudi, Dawiyat; Kernien, John F.; Vignali, Dario A.; Sullivan, Jeremy A.; Wilkes, David S.; Burlingham, William J.; Greenspan, Daniel S.; Department of Microbiology & Immunology, IU School of MedicineWe have shown previously that collagen V (col(V)) autoimmunity is a consistent feature of atherosclerosis in human coronary artery disease and in the Apoe(-/-) mouse model. We have also shown sensitization of Apoe(-/-) mice with col(V) to markedly increase the atherosclerotic burden, providing evidence of a causative role for col(V) autoimmunity in atherosclerotic pathogenesis. Here we sought to determine whether induction of immune tolerance to col(V) might ameliorate atherosclerosis, providing further evidence for a causal role for col(V) autoimmunity in atherogenesis and providing insights into the potential for immunomodulatory therapeutic interventions. Mucosal inoculation successfully induced immune tolerance to col(V) with an accompanying reduction in plaque burden in Ldlr(-/-) mice on a high-cholesterol diet. The results therefore demonstrate that inoculation with col(V) can successfully ameliorate the atherosclerotic burden, suggesting novel approaches for therapeutic interventions. Surprisingly, tolerance and reduced atherosclerotic burden were both dependent on the recently described IL-35 and not on IL-10, the immunosuppressive cytokine usually studied in the context of induced tolerance and amelioration of atherosclerotic symptoms. In addition to the above, using recombinant protein fragments, we were able to localize two epitopes of the α1(V) chain involved in col(V) autoimmunity in atherosclerotic Ldlr(-/-) mice, suggesting future courses of experimentation for the characterization of such epitopes.Item Roles of T follicular helper cells and T follicular regulatory cells in Autoantibody Production in IL-2-deficient mice(American Association of Immunologists, 2019-07-12) Xie, Markus M.; Liu, Hong; Corn, Caleb; Koh, Byung-Hee; Kaplan, Mark H.; Turner, Matthew J.; Dent, Alexander L.; Microbiology and Immunology, School of MedicineAutoantibodies can result from excessive T follicular helper (Tfh) cell activity, whereas T follicular regulatory (Tfr) cells negatively regulate autoantibody production. IL-2 knockout (KO) mice on the BALB/c background have elevated Tfh responses, produce autoantibodies, and develop lethal autoimmunity. We analyzed Tfh and Tfr cells in IL-2 KO mice on the C57BL/6 (B6) genetic background. In B6 IL-2 KO mice, the spontaneous formation of Tfh cells and germinal center B cells was greatly enhanced, along with production of anti-DNA autoantibodies. IL-2 has been reported to repress Tfr cell differentiation; however, Tfr cells were not increased over wild-type levels in the B6 IL-2 KO mice. To assess Tfh and Tfr cell regulation of autoantibody production in IL-2 KO mice, we generated IL-2 KO mice with a T cell-specific deletion of the master Tfh cell transcription factor Bcl6. In IL-2 KO Bcl6 conditional KO (2KO-Bcl6TC) mice, Tfh cells, Tfr cells, and germinal center B cells were ablated. In contrast to expectations, autoantibody IgG titers in 2KO-Bcl6TC mice were significantly elevated over autoantibody IgG titers in IL-2 KO mice. Specific deletion of Tfr cells with Foxp3-cre Bcl6-flox alleles in IL-2 KO mice led to early lethality, before high levels of autoantibodies could develop. We found IL-2+/+ Tfr cell-deficient mice produce significant levels of autoantibodies. Our overall findings provide evidence that Tfh cells are dispensable for high-level production of autoantibodies and also reveal a complex interplay between Tfh and Tfr cells in autoantibody production and autoimmune disease.