- Browse by Subject
Browsing by Subject "Biomedical Engineering"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Advancing cognitive engineering methods to support user interface design for electronic health records(Elsevier, 2014-04) Thyvalikakath, Thankam P.; Dziabiak, Michael P.; Johnson, Raymond; Torres-Urquidy, Miguel Humberto; Acharya, Amit; Yabes, Jonathan; Schleyer, Titus K.; Department of Cariology, Operative Dentistry and Dental Public Health, IU School of DentistryBackground Despite many decades of research on the effective development of clinical systems in medicine, the adoption of health information technology to improve patient care continues to be slow, especially in ambulatory settings. This applies to dentistry as well, a primary care discipline with approximately 137,000 practitioners in the United States. A critical reason for slow adoption is the poor usability of clinical systems, which makes it difficult for providers to navigate through the information and obtain an integrated view of patient data. Objective In this study, we documented the cognitive processes and information management strategies used by dentists during a typical patient examination. The results will inform the design of a novel electronic dental record interface. Methods We conducted a cognitive task analysis (CTA) study to observe ten general dentists (five general dentists and five general dental faculty members, each with more than two years of clinical experience) examining three simulated patient cases using a think-aloud protocol. Results Dentists first reviewed the patient’s demographics, chief complaint, medical history and dental history to determine the general status of the patient. Subsequently, they proceeded to examine the patient’s intraoral status using radiographs, intraoral images, hard tissue and periodontal tissue information. The results also identified dentists’ patterns of navigation through patient’s information and additional information needs during a typical clinician-patient encounter. Conclusion This study reinforced the significance of applying cognitive engineering methods to inform the design of a clinical system. Second, applying CTA to a scenario closely simulating an actual patient encounter helped with capturing participants’ knowledge states and decision-making when diagnosing and treating a patient. The resultant knowledge of dentists’ patterns of information retrieval and review will significantly contribute to designing flexible and task-appropriate information presentation in electronic dental records.Item Creating Virtual Spaces to Build Community Among Students Entering an Undergraduate Biomedical Engineering Program(Springer Nature, 2020-08-20) Higbee, Steven; Miller, Sharon; Waterfill, Abigail; Maxey, Kayla; Stella, Julie; Wallace, Joseph; Department of Biomedical Engineering, Purdue School of Engineering & TechnologyAfter the transition to online instruction in response to the COVID-19 pandemic, students in our program lamented the loss of connection to their peers, more so than diminished access to faculty, teaching assistants, or other resources. Fortunately, given that the semester was well underway when the transition occurred and few students in our courses were new to our BME program, we feel that students missed out on relatively few formative community-building experiences. This would not be the case for a fall semester of online instruction, however, so we must take action for the sake of our incoming class of undergraduate students. Our experience from spring 2020 and our review of the relevant literature suggest that we can be successful at building community among our new cohort of BME students, regardless of the mode of instruction.Item Developing Novel Antibacterial Dental Filling Composite Restoratives(2020-05) Caneli, Gulsah; Xie, Dong; Anderson, Gregory; Na, SungsooA novel antimicrobial dental composite system has been developed and evaluated. Both alumina and zirconia filler particles were covalently coated with an antibacterial resin and blended into a composite formulation, respectively. Surface hardness and bacterial viability were used to evaluate the coated alumina fi ller-modif ed composite. Compressive strength and bacterial viability were used to evaluate the coated zirconia ller-modi ed composite. Commercial composite Kerr was used as control. The specimens were conditioned in distilled water at 37 °C for 24 h prior to testing. Four bacterial species Streptococcus mutans, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli were used to assess the bacterial viability. Effects of antibacterial moiety content, modif ed particle size and loading, and total fi ller content was investigated. Chapter 2 describes how we studied and evaluated the composite modi fed with antibacterial resin-coated alumina llers. The results showed that almost all the modi ed composites exhibited higher antibacterial activity along with improved surface hardness, as compared to unmodi fed one. Increasing antibacterial moiety content, particle size and loading, and total fi ller content generally increased surface hardness. Increasing antibacterial moiety, fi ller loading, and total fi ller content increased antibacterial activity. On the other hand, increasing particle size showed a negative impact on antibacterial activity. The leaching tests indicate that the modiChapter 3 describes how we studied and evaluated the composite modif ed with antibacterial resin-coated zirconia fi ller. The results showed that almost all the modif ed composites exhibited higher antibacterial activity along with decreased compressive strength, as compared to the unmodif ed control. It was found that with increasing antibacterial moiety content and modi fedfi ller loading, yield strength, modulus and compressive strength of the composite were decreased. In addition, the strengths of the composite were increased with increasing powder/liquid ratio. On the other hand, with increasing antibacterial moiety content, fi ller loading and powder/liquid ratio, antibacterial activity was enhanced. In summary, we have developed a novel antibacterial dental composite system for improved dental restoratives. Both composites modif ed with the antibacterial resin-coated alumina and zirconia fi ller have demonstrated signi cant antibacterial activities. The composite modi fed with the alumina fi ller showed improved hardness values, but the composite modif ed with the zirconia fi ller showed decreased compressive strength values. It appears that the developed system is a non-leaching antibacterial dental composite. ed experimental composite showed no leachable antibacterial component to bacteria.Item Effect of Shear Stress on RhoA Activities and Cytoskeletal Organization in Chondrocytes(2013-09-05) Wan, Qiaoqiao; Na, Sungsoo; Li, Jiliang; Yokota, HirokiMechanical force environment is a major factor that influences cellular homeostasis and remodeling. The prevailing wisdom in this field demonstrated that a threshold of mechanical forces or deformation was required to affect cell signaling. However, by using a fluorescence resonance energy transfer (FRET)-based approach, we found that C28/I2 chondrocytes exhibited an increase in RhoA activities in response to high shear stress (10 or 20 dyn/cm2), while they showed a decrease in their RhoA activities to intermediate shear stress at 5 dyn/cm2. No changes were observed under low shear stress (2 dyn/ cm2). The observed two-level switch of RhoA activities was closely linked to the shear stress-induced alterations in actin cytoskeleton and traction forces. In the presence of constitutively active RhoA (RhoA-V14), intermediate shear stress suppressed RhoA activities, while high shear stress failed to activate them. Collectively, these results herein suggest that intensities of shear stress are critical in differential activation and inhibition of RhoA activities in chondrocytes.Item Exploring Chondrocyte Integrin Regulation of Growth Factor IGF-I Expression from a Transient pAAV Vector(2013-08-20) Ratley, Samantha Kay; Trippel, Stephen B.; Lin, Chien-Chi; Stocum, David L.Insulin-like Growth Factor I (IGF-I) is a growth factor that stimulates both mitogenic and anabolic responses in articular chondrocytes. While it has been shown that exogenous IGF-I can regulate chondrocyte integrins, little is known regarding regulatory effects of IGF-I produced from a transiently expressed plasmid based adeno-associated virus (pAAV) vector. Because chondrocytes are using cellular machinery to overexpress IGF-I, it is of interest to see whether or not pAAV IGF-I will significantly upregulate or downregulate chondrocyte integrins. Additionally, it is of interest to know whether chondrocyte adhesion through integrins will have any regulatory effects on the production of IGF-I from the transgene. Therefore, this study will ascertain if pAAV IGF-I will have similar effects that exogenous IGF-I has on integrin regulation and if integrin silencing mechanisms will affect the production of IGF-I from the transgene. To test these hypotheses, adult articular chondrocytes were doubly transfected with the pAAV vector for IGF-I and short interference ribonucleic acid (siRNA) for integrins beta 1 and alpha V. Gene products were monitored at the transcriptional levels using quantitative real time polymerase chain reactions (qPCR) and IGF-I protein production was monitored at the translational level using enzyme linked immunoabsorbant assays (ELISAs). Adult articular chondrocytes doubly transfected were encapsulated in a three dimensional hydrogel system to simulate an in vivo environment. Samples were collected for analysis at days 2, 4, and 6 post encapsulation. Results show that IGF-I treatment with the pAAV vector does not cause significant changes in the transcriptional regulation of the beta 1 integrin in a three dimensional hydrogel system. The pAAV IGF-I vector did not cause significant regulatory changes on integrin alpha V at any time point during the experiment. Additionally, by knocking down the expression levels of integrins by using siRNA, it was shown that integrin knockdown does not have a significant regulatory effect on transcriptional or translational expression levels of IGF-I from the pAAV vector.