- Browse by Subject
Browsing by Subject "Cell Movement"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Aberrant Adult Neurogenesis in the Subventricular Zone-Rostral Migratory Stream-Olfactory Bulb System Following Subchronic Manganese Exposure(Oxford University Press, 2016-04) Fu, Sherleen; Jiang, Wendy; Gao, Xiang; Zeng, Andrew; Cholger, Daniel; Cannon, Jason; Chen, Jinhui; Zheng, Wei; Department of Neurological Surgery, School of MedicineAdult neurogenesis occurs in brain subventricular zone (SVZ). Our recent data reveal an elevated proliferation of BrdU(+) cells in SVZ following subchronic manganese (Mn) exposure in rats. This study was designed to distinguish Mn effect on the critical stage of adult neurogenesis, ie, proliferation, migration, survival and differentiation from the SVZ via the rostral migratory stream to the olfactory bulb (OB). Adult rats received a single ip-dose of BrdU at the end of 4-week Mn exposure to label proliferating cells. Immunostaining and cell-counting showed a 48% increase of BrdU(+) cells in Mn-exposed SVZ than in controls (P< .05). These BrdU(+) cells were identified as a mixed population of mainly GFAP(+) type-B neural stem cells, Nestin(+) type-C transit progenitor cells, DCX(+) migratory neuroblasts and Iba1(+) microglial cells. Another group of adult rats received 3 daily ip-injections of BrdU followed by subchronic Mn exposure. By 4-week post BrdU labeling, most of the surviving BrdU(+) cells in the OB were differentiated into NeuN(+) matured neurons. However, survival rates of BrdU/NeuN/DAPI triple-labeled cells in OB were 33% and 64% in Mn-exposed and control animals, respectively (P< .01). Infusion of Cu directly into the lateral ventricle significantly decreased the cell proliferation in the SVZ. Taken together, these results suggest that Mn exposure initially enhances the cell proliferation in adult SVZ. In the OB, however, Mn exposure significantly reduces the surviving adult-born cells and markedly inhibits their differentiation into mature neurons, resulting in an overall decreased adult neurogenesis in the OB.Item Changes in mRNA/protein expression and signaling pathways in in vivo passaged mouse ovarian cancer cells(Public Library of Science, 2018-06-21) Cai, Qingchun; Fan, Qipeng; Buechlein, Aaron; Miller, David; Nephew, Kenneth P.; Liu, Sheng; Wan, Jun; Xu, Yan; Obstetrics and Gynecology, School of MedicineThe cure rate for late stage epithelial ovarian cancer (EOC) has not significantly improved over several decades. New and more effective targets and treatment modalities are urgently needed. RNA-seq analyses of a syngeneic EOC cell pair, representing more and less aggressive tumor cells in vivo were conducted. Bioinformatics analyses of the RNA-seq data and biological signaling and function studies have identified new targets, such as ZIP4 in EOC. Many up-regulated tumor promoting signaling pathways have been identified which are mainly grouped into three cellular activities: 1) cell proliferation and apoptosis resistance; 2) cell skeleton and adhesion changes; and 3) carbohydrate metabolic reprograming. Unexpectedly, lipid metabolism has been the major down-regulated signaling pathway in the more aggressive EOC cells. In addition, we found that hypoxic responsive genes were at the center stage of regulation and detected functional changes were related to cancer stem cell-like activities. Moreover, our genetic, cellular, biochemical, and lipidomic analyses indicated that cells grown in 2D vs. 3D, or attached vs. suspended had dramatic changes. The important clinical implications of peritoneal cavity floating tumor cells are supported by the data proved in this work. Overall, the RNA-seq data provide a landscape of gene expression alterations during tumor progression.Item Inflammatory Chemokines MIP-1δ and MIP-3α Are Involved in the Migration of Multipotent Mesenchymal Stromal Cells Induced by Hepatoma Cells(Mary Ann Liebert, Inc., 2015-05-15) Lejmi, Esma; Perriraz, Nadja; Clement, Sophie; Morel, Philippe; Baertschiger, Reto; Christofilopoulos, Panayiotis; Meier, Raphael; Bosco, Domenico; Gonelle-Gispert, Carmen; Buhler, Leo H.; Department of Surgery, IU School of MedicineIn vivo, bone marrow-derived multipotent mesenchymal stromal cells (MSC) have been identified at sites of tumors, suggesting that specific signals mobilize and activate MSC to migrate to areas surrounding tumors. The signals and migratory mechanisms that guide MSC are not well understood. Here, we investigated the migration of human MSC induced by conditioned medium of Huh-7 hepatoma cells (Huh-7 CM). Using a transwell migration system, we showed that human MSC migration was increased in the presence of Huh-7 CM. Using a human cytokine antibody array, we detected increased levels of MIP-1δ and MIP-3α in Huh-7 CM. Recombinant chemokines MIP-1δ and MIP-3α induced MSC migration. Anti-MIP-1δ and anti-MIP-3α antibodies added to Huh-7 CM decreased MSC migration, further suggesting that MIP-1δ and MIP-3α were implicated in the Huh-7 CM-induced MSC migration. By real-time polymerase chain reaction, we observed an absence of chemokine receptors CCR2 and CXCR2 and low expression of CCR1, CCR5, and CCR6 in MSC. Expression of these chemokine receptors was not regulated by Huh-7 CM. Furthermore, matrix metalloproteinase 1 (MMP-1) expression was strongly increased in MSC after incubation with Huh-7 CM, suggesting that MSC migration depends on MMP-1 activity. The signaling pathway MAPK/ERK was activated by Huh-7 CM but its inhibition by PD98059 did not impair Huh-7 CM-induced MSC migration. Further, long-term incubation of MSC with MIP-1δ increased α-smooth muscle actin expression, suggesting its implication in the Huh-7 CM-induced evolvement of MSC into myofibroblasts. In conclusion, we report that two inflammatory cytokines, MIP-1δ and MIP-3α, are able to increase MSC migration in vitro. These cytokines might be responsible for migration and evolvement of MSC into myofibroblasts around tumors.Item Mild Heat Treatment Primes Human CD34(+) Cord Blood Cells for Migration Toward SDF-1α and Enhances Engraftment in an NSG Mouse Model(Wiley Blackwell (John Wiley & Sons), 2015-06) Capitano, Maegan L.; Hangoc, Giao; Cooper, Scott; Broxmeyer, Hal E.; Department of Microbiology and Immunology, IU School of MedicineSimple efforts are needed to enhance cord blood (CB) transplantation. We hypothesized that short-term exposure of CD34(+) CB cells to 39.5°C would enhance their response to stromal-derived factor-1 (SDF-1), by increasing lipid raft aggregation and CXCR4 expression, thus leading to enhanced engraftment. Mild hyperthermia (39.5°C) significantly increased the percent of CD34(+) CB that migrated toward SDF-1. This was associated with increased expression of CXCR4 on the cells. Mechanistically, mild heating increased the percent of CD34(+) cells with aggregated lipid rafts and enhanced colocalization of CXCR4 within lipid raft domains. Using methyl-β-cyclodextrin (MβCD), an agent that blocks lipid raft aggregation, it was determined that this enhancement in chemotaxis was dependent upon lipid raft aggregation. Colocalization of Rac1, a GTPase crucial for cell migration and adhesion, with CXCR4 to the lipid raft was essential for the effects of heat on chemotaxis, as determined with an inhibitor of Rac1 activation, NSC23766. Application-wise, mild heat treatment significantly increased the percent chimerism as well as homing and engraftment of CD34(+) CB cells in sublethally irradiated non-obese diabetic severe combined immunodeficiency IL-2 receptor gamma chain d (NSG) mice. Mild heating may be a simple and inexpensive means to enhance engraftment following CB transplantation in patients.Item Phosphatase of regenerating liver 3 (PRL3) provokes a tyrosine phosphoproteome to drive prometastatic signal transduction(ASBMB, 2013-09-12) Walls, Chad D.; Iliuk, Anton; Bai, Yunpeng; Wang, Mu; Tao, W. Andy; Zhang, Zhong-Yin; Department of Biochemistry & Molecular Biology, IU School of MedicinePhosphatase of regenerating liver 3 (PRL3) is suspected to be a causative factor toward cellular metastasis when in excess. To date, the molecular basis for PRL3 function remains an enigma, making efforts at distilling a concerted mechanism for PRL3-mediated metastatic dissemination very difficult. We previously discovered that PRL3 expressing cells exhibit a pronounced increase in protein tyrosine phosphorylation. Here we take an unbiased mass spectrometry-based approach toward identifying the phosphoproteins exhibiting enhanced levels of tyrosine phosphorylation with a goal to define the "PRL3-mediated signaling network." Phosphoproteomic data support intracellular activation of an extensive signaling network normally governed by extracellular ligand-activated transmembrane growth factor, cytokine, and integrin receptors in the PRL3 cells. Additionally, data implicate the Src tyrosine kinase as the major intracellular kinase responsible for "hijacking" this network and provide strong evidence that aberrant Src activation is a major consequence of PRL3 overexpression. Importantly, the data support a PDGF(α/β)-, Eph (A2/B3/B4)-, and Integrin (β1/β5)-receptor array as being the predominant network coordinator in the PRL3 cells, corroborating a PRL3-induced mesenchymal-state. Within this network, we find that tyrosine phosphorylation is increased on a multitude of signaling effectors responsible for Rho-family GTPase, PI3K-Akt, STAT, and ERK activation, linking observations made by the field as a whole under Src as a primary signal transducer. Our phosphoproteomic data paint the most comprehensive picture to date of how PRL3 drives prometastatic molecular events through Src activation.Item A Small Molecule Compound Targeting STAT3 DNA-Binding Domain Inhibits Cancer Cell Proliferation, Migration, and Invasion(American Chemical Society, 2014-05-16) Huang, Wei; Dong, Zizheng; Wang, Fang; Peng, Hui; Liu, Jing-Yuan; Zhang, Jian-Ting; Department of Pharmacology and Toxicology, IU School of MedicineSignal transducer and activator of transcription 3 (STAT3) plays important roles in multiple aspects of cancer aggressiveness including migration, invasion, survival, self-renewal, angiogenesis, and tumor cell immune evasion by regulating the expression of multiple downstream target genes. STAT3 is constitutively activated in many malignant tumors and its activation is associated with high histological grade and advanced cancer stages. Thus, inhibiting STAT3 promises an attracting strategy for treatment of advanced and metastatic cancers. Herein, we identified a STAT3 inhibitor, inS3-54, by targeting the DNA-binding domain of STAT3 using an improved virtual screening strategy. InS3-54 preferentially suppresses proliferation of cancer over non-cancer cells and inhibits migration and invasion of malignant cells. Biochemical analyses show that inS3-54 selectively inhibits STAT3 binding to DNA without affecting the activation and dimerization of STAT3. Furthermore, inS3-54 inhibits expression of STAT3 downstream target genes and STAT3 binding to chromatin in situ. Thus, inS3-54 represents a novel probe for development of specific inhibitors targeting the DNA-binding domain of STAT3 and a potential therapeutic for cancer treatments.Item Transthyretin Stimulates Tumor Growth through Regulation of Tumor, Immune, and Endothelial Cells(American Association of Immunologists, 2019-02-01) Lee, Chih-Chun; Ding, Xinchun; Zhao, Ting; Wu, Lingyan; Perkins, Susan; Du, Hong; Yan, Cong; Pathology and Laboratory Medicine, School of MedicineEarly detection of lung cancer offers an important opportunity to decrease mortality while it is still treatable and curable. Thirteen secretory proteins that are Stat3 downstream gene products were identified as a panel of biomarkers for lung cancer detection in human sera. This panel of biomarkers potentially differentiates different types of lung cancer for classification. Among them, the transthyretin (TTR) concentration was highly increased in human serum of lung cancer patients. TTR concentration was also induced in the serum, bronchoalveolar lavage fluid, alveolar type II epithelial cells, and alveolar myeloid cells of the CCSP-rtTA/(tetO)7-Stat3C lung tumor mouse model. Recombinant TTR stimulated lung tumor cell proliferation and growth, which were mediated by activation of mitogenic and oncogenic molecules. TTR possesses cytokine functions to stimulate myeloid cell differentiation, which are known to play roles in tumor environment. Further analyses showed that TTR treatment enhanced the reactive oxygen species production in myeloid cells and enabled them to become functional myeloid-derived suppressive cells. TTR demonstrated a great influence on a wide spectrum of endothelial cell functions to control tumor and immune cell migration and infiltration. TTR-treated endothelial cells suppressed T cell proliferation. Taken together, these 13 Stat3 downstream inducible secretory protein biomarkers potentially can be used for lung cancer diagnosis, classification, and as clinical targets for lung cancer personalized treatment if their expression levels are increased in a given lung cancer patient in the blood.Item β-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells(PLoS, 2015-02-06) Xu, Jinhua; Prosperi, Jenifer R.; Choudhury, Noura; Olopade, Olufunmilayo I.; Goss, Kathleen H.; Department of Biochemistry and Molecular Biology, IU School of MedicineOur previous data illustrated that activation of the canonical Wnt signaling pathway was enriched in triple-negative breast cancer and associated with reduced overall survival in all patients. To determine whether Wnt signaling may be a promising therapeutic target for triple-negative breast cancer, we investigated whether β-catenin was necessary for tumorigenic behaviors in vivo and in vitro. β-catenin expression level was significantly reduced in two human triple-negative breast cancer cell lines, MDA-MB-231 and HCC38, using lentiviral delivery of β-catenin-specific small hairpin RNAs (shRNAs). Upon implantation of the cells in the mammary fat pad of immunocompromised mice, we found that β-catenin shRNA HCC38 cells formed markedly smaller tumors than control cells and grew much more slowly. In in vitro assays, β-catenin silencing significantly reduced the percentage of Aldefluor-positive cells, a read-out of the stem-like cell population, as well as the expression of stem cell-related target genes including Bmi-1 and c-Myc. β-catenin-knockdown cells were also significantly impaired in their ability to migrate in wound-filling assays and form anchorage-independent colonies in soft agar. β-catenin-knockdown cells were more sensitive to chemotherapeutic agents doxorubicin and cisplatin. Collectively, these data suggest that β-catenin is required for triple-negative breast cancer development by controlling numerous tumor-associated properties, such as migration, stemness, anchorage-independent growth and chemosensitivity.