- Browse by Subject
Browsing by Subject "Cerebellum"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Cerebellar tDCS consistency and metabolite changes: A recommendation to decrease barriers to replicability(Elsevier, 2020-11) Moussa-Tooks, Alexandra B.; Burroughs, Leah P.; Rejimon, Abinand C.; Cheng, Hu; Hetrick, William P.; Psychiatry, School of MedicineItem Gray matter density loss in essential tremor: a lobule by lobule analysis of the cerebellum(BMC, 2017-07-03) Dyke, Jonathan P.; Cameron, Eric; Hernandez, Nora; Dydak, Ulrike; Louis, Elan D.; Radiology and Imaging Sciences, School of MedicineBACKGROUND: The pathophysiological basis for essential tremor (ET) remains unclear, although evidence increasingly links it to a disordered and perhaps degenerative cerebellum. Prior imaging studies have treated the cerebellum en bloc. Our hypothesis was that regional differences in cerebellar gray matter (GM) density may better distinguish ET cases from controls. Forty-seven ET cases and 36 control subjects were imaged using magnetic resonance imaging (MRI). The cerebellum was segmented into 34 lobes using a Spatially Unbiased Infra-Tentorial Template (SUIT) atlas within the Statistical Parametric Mapping (SPM) analysis package. Age, gender and Montreal Cognitive Assessment (MoCA) scores were regressed out from the statistical models to isolate group effects. ET cases were further stratified into phenotypically-defined subgroups. The Benjamini-Hochberg False Discovery Rate procedure (BH FDR) (α = 0.1) was used to correct for multiple comparisons. RESULTS: When all ET cases and controls were compared, none of the regions met the BH FDR criteria for significance. When compared with controls, ET cases with head or jaw tremor (n = 27) had significant changes in GM density in nine cerebellar lobules, with a majority in the left cerebellar region, and each meeting the BH FDR criteria. Likewise, ET cases with voice tremor (n = 22) exhibited significant changes in 11 lobules in both left and right regions and the vermis. These analyses, in sum, indicated decreases in GM density in lobules I-IV, V, VI, VII and VIII as well as the vermis. ET cases with severe tremor (n = 20) did not show regions of change that survived the BH FDR procedure when compared to controls. CONCLUSIONS: We showed that ET cases with various forms of cranial tremor differed from controls with respect to cerebellar GM density, with evidence of GM reduction across multiple cerebellar regions. Additional work, using a lobule-by-lobule approach, is needed to confirm these results and precisely map the regional differences in ET cases, subgroups of ET cases, and controls.Item Impaired Cerebellar-Dependent Eyeblink Conditioning in First-Degree Relatives of Individuals With Schizophrenia(Oxford University Press, 2014-09) Bolbecker, Amanda R.; Kent, Jerillyn S.; Petersen, Isaac T.; Klaunig, Mallory J.; Forsyth, Jennifer K.; Howell, Josselyn M.; Westfall, Daniel R.; O’Donnell, Brian F.; Hetrick, William P.; Department of Psychiatry, IU School of MedicineConsistent with reports of cerebellar structural, functional, and neurochemical anomalies in schizophrenia, robust cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been observed in the disorder. Impaired dEBC is also present in schizotypal personality disorder, an intermediate phenotype of schizophrenia. The present work sought to determine whether dEBC deficits exist in nonpsychotic first-degree relatives of individuals with schizophrenia. A single-cue tone dEBC paradigm consisting of 10 blocks with 10 trials each (9 paired and 1 unpaired trials) was used to examine the functional integrity of cerebellar circuitry in schizophrenia participants, individuals with a first-degree relative diagnosed with schizophrenia, and healthy controls with no first-degree relatives diagnosed with schizophrenia. The conditioned stimulus (a 400ms tone) coterminated with the unconditioned stimulus (a 50ms air puff to the left eye) on paired trials. One relative and 2 healthy controls were removed from further analysis due to declining conditioned response rates, leaving 18 schizophrenia participants, 17 first-degree relatives, and 16 healthy controls. Electromyographic data were subsequently analyzed using growth curve models in hierarchical linear regression. Acquisition of dEBC conditioned responses was significantly impaired in schizophrenia and first-degree relative groups compared with controls. This finding that cerebellar-mediated associative learning deficits are present in first-degree relatives of individuals with schizophrenia provides evidence that dEBC abnormalities in schizophrenia may not be due to medication or course of illness effects. Instead, the present results are consistent with models of schizophrenia positing cerebellar-cortical circuit abnormalities and suggest that cerebellar abnormalities represent a risk marker for the disorder.Item Impaired Effective Connectivity During a Cerebellar-Mediated Sensorimotor Synchronization Task in Schizophrenia(Oxford University Press, 2019-04) Moussa-Tooks, Alexandra B.; Kim, Dae-Jin; Bartolomeo, Lisa A.; Purcell, John R.; Bolbecker, Amanda R.; Newman, Sharlene D.; O’Donnell, Brian F.; Hetrick, William P.; Psychiatry, School of MedicineProminent conceptual models characterize schizophrenia as a dysconnectivity syndrome, with recent research focusing on the contributions of the cerebellum in this framework. The present study examined the role of the cerebellum and its effective connectivity to the cerebrum during sensorimotor synchronization in schizophrenia. Specifically, the role of the cerebellum in temporally coordinating cerebral motor activity was examined through path analysis. Thirty-one individuals diagnosed with schizophrenia and 40 healthy controls completed a finger-tapping fMRI task including tone-paced synchronization and self-paced continuation tapping at a 500 ms intertap interval (ITI). Behavioral data revealed shorter and more variable ITIs during self-paced continuation, greater clock (vs motor) variance, and greater force of tapping in the schizophrenia group. In a whole-brain analysis, groups showed robust activation of the cerebellum during self-paced continuation but not during tone-paced synchronization. However, effective connectivity analysis revealed decreased connectivity in individuals with schizophrenia between the cerebellum and primary motor cortex but increased connectivity between cerebellum and thalamus during self-paced continuation compared with healthy controls. These findings in schizophrenia indicate diminished temporal coordination of cerebral motor activity by cerebellum during the continuation tapping portion of sensorimotor synchronization. Taken together with the behavioral finding of greater temporal variability in schizophrenia, these effective connectivity results are consistent with structural and temporal models of dysconnectivity in the disorder.Item In Vivo Dentate Nucleus Gamma-aminobutyric Acid Concentration in Essential Tremor vs. Controls(Springer Nature, 2018-04) Louis, Elan D.; Hernandez, Nora; Dyke, Jonathan P.; Ma, Ruoyun E.; Dydak, Ulrike; Radiology and Imaging Sciences, School of MedicineDespite its high prevalence, essential tremor (ET) is among the most poorly understood neurological diseases. The presence and extent of Purkinje cell (PC) loss in ET is the subject of controversy. PCs are a major storehouse of central nervous system gamma-aminobutyric acid (GABA), releasing GABA at the level of the dentate nucleus. It is therefore conceivable that cerebellar dentate nucleus GABA concentration could be an in vivo marker of PC number. We used in vivo 1H magnetic resonance spectroscopy (MRS) to quantify GABA concentrations in two cerebellar volumes of interest, left and right, which included the dentate nucleus, comparing 45 ET cases to 35 age-matched controls. 1H MRS was performed using a 3.0-T Siemens Tim Trio scanner. The MEGA-PRESS J-editing sequence was used for GABA detection in two cerebellar volumes of interest (left and right) that included the dentate nucleus. The two groups did not differ with respect to our primary outcome of GABA concentration (given in institutional units). For the right dentate nucleus, [GABA] in ET cases = 2.01 ± 0.45 and [GABA] in controls = 1.86 ± 0.53, p = 0.17. For the left dentate nucleus, [GABA] in ET cases = 1.68 ± 0.49 and [GABA] controls = 1.80 ± 0.53, p = 0.33. The controls had similar dentate nucleus [GABA] in the right vs. left dentate nucleus (p = 0.52); however, in ET cases, the value on the right was considerably higher than that on the left (p = 0.001). We did not detect a reduction in dentate nucleus GABA concentration in ET cases vs. CONTROLS: One interpretation of the finding is that it does not support the existence of PC loss in ET; however, an alternative interpretation is the observed pattern could be due to the effects of terminal sprouting in ET (i.e., collateral sprouting from surviving PCs making up for the loss of GABA-ergic terminals from PC degeneration). Further research is needed.Item Long-Term Aberrations To Cerebellar Endocannabinoids Induced By Early-Life Stress(Nature Research, 2020-04-29) Moussa-Tooks, Alexandra B.; Larson, Eric R.; Gimeno, Alex F.; Leishman, Emma; Bartolomeo, Lisa A.; Bradshaw, Heather B.; Green, John T.; O’Donnell, Brian F.; Mackie, Ken; Hetrick, William P.; Psychiatry, School of MedicineEmerging evidence points to the role of the endocannabinoid system in long-term stress-induced neural remodeling with studies on stress-induced endocannabinoid dysregulation focusing on cerebral changes that are temporally proximal to stressors. Little is known about temporally distal and sex-specific effects, especially in cerebellum, which is vulnerable to early developmental stress and is dense with cannabinoid receptors. Following limited bedding at postnatal days 2-9, adult (postnatal day 70) cerebellar and hippocampal endocannabinoids, related lipids, and mRNA were assessed, and behavioral performance evaluated. Regional and sex-specific effects were present at baseline and following early-life stress. Limited bedding impaired peripherally-measured basal corticosterone in adult males only. In the CNS, early-life stress (1) decreased 2-arachidonoyl glycerol and arachidonic acid in the cerebellar interpositus nucleus in males only; (2) decreased 2-arachidonoyl glycerol in females only in cerebellar Crus I; and (3) increased dorsal hippocampus prostaglandins in males only. Cerebellar interpositus transcriptomics revealed substantial sex effects, with minimal stress effects. Stress did impair novel object recognition in both sexes and social preference in females. Accordingly, the cerebellar endocannabinoid system exhibits robust sex-specific differences, malleable through early-life stress, suggesting the role of endocannabinoids and stress to sexual differentiation of the brain and cerebellar-related dysfunctions.Item Phospholemman, a Single-Span Membrane Protein, Is an Accessory Protein of Na,K-ATPase in Cerebellum and Choroid Plexus(Society for Neuroscience, 2003-03-15) Feschenko, Marina S.; Donnet, Claudia; Wetzel, Randall K.; Asinovski, Natalya K.; Jones, Larry R.; Sweadner, Kathleen J.; Medicine, School of MedicinePhospholemman (FXYD1) is a homolog of the Na,K-ATPase γ subunit (FXYD2), a small accessory protein that modulates ATPase activity. Here we show that phospholemman is highly expressed in selected structures in the CNS. It is most abundant in cerebellum, where it was detected in the molecular layer, in Purkinje neurons, and in axons traversing the granule cell layer. Phospholemman was particularly enriched in choroid plexus, the organ that secretes CSF in the ventricles, where it colocalized with Na,K-ATPase in the apical membrane. It was also enriched, with Na,K-ATPase, in certain tanycytes or ependymal cells of the ventricle wall. Two different experimental approaches demonstrated that phospholemman physically associated with the Na,K-ATPase in cerebellum and choroid plexus: the proteins copurified after detergent treatment and co-immunoprecipitated from solubilized crude membranes using either anti-phospholemman or anti-Na,K-ATPase antibodies. Phospholemman antibodies precipitated all three Na,K-ATPase α subunit isoforms (α1–α3) from cerebellum, indicating that the interaction is not specific to a particular α isoform and consistent with the presence of phospholemman in both neurons and glia. Antibodies against the C-terminal domain of phospholemman reduced Na,K-ATPase activityin vitro without effect on Na+affinity. At least two other FXYD family members have been detected in the CNS, suggesting that additional complexity of sodium pump regulation will be found.Item Prism Adaptation Deficits in Schizophrenia(Oxford University Press, 2020-03-17) Bartolomeo, Lisa A.; Shin, Yong-Wook; Block, Hannah J.; Bolbecker, Amanda R.; Breier, Alan F.; O’Donnell, Brian; Hetrick, William P.; Psychiatry, School of MedicineRecent clinical and neurobehavioral evidence suggests cerebellar dysfunction in schizophrenia (SZ). We used the prism adaptation motor task (PAT) to probe specific cerebellar circuits in the disorder. PAT requires cerebellum-dependent motor adaptation, perceptual remapping, and strategic control. A failure to engage in early corrective processes may indicate impairment within either the cerebellum or regions contributing to strategic components, such as the parietal lobe, while an inability to develop and retain a visuomotor shift with time strongly suggests cerebellar impairment. Thirty-one individuals with SZ and 31 individuals without a history of psychological disorders completed PAT. Subjects reached to a target before, during, and following prism exposure, while their movements were recorded using motion-sensing technology. The SZ group performed worse on conditions consisting of adaptation, post-adaptation, aftereffects, and reorientation, thereby demonstrating a failure to adapt to the same degree as healthy controls. SZ performance remained impaired even with visual feedback and did not differ from controls at baseline, suggesting the observed deficit is specific to adaptation. Results indicate that sensorimotor adaptation is impaired in SZ and implicate disturbances in cerebellar circuits.