- Browse by Subject
Browsing by Subject "Colorectal cancer"
Now showing 1 - 10 of 33
Results Per Page
Sort Options
Item The accuracy and completeness for receipt of colorectal cancer care using Veterans Health Administration administrative data.(BMC, 2016) Sherer, Eric A.; Fisher, Deborah A.; Barnd, Jeffrey; Jackson, George L.; Provenzale, Dawn; Haggstrom, David A.; Department of Medicine, IU School of MedicineThe National Comprehensive Cancer Network and the American Society of Clinical Oncology have established guidelines for the treatment and surveillance of colorectal cancer (CRC), respectively. Considering these guidelines, an accurate and efficient method is needed to measure receipt of care.Item ACVR2B antagonism as a countermeasure to multi‐organ perturbations in metastatic colorectal cancer cachexia(Wiley, 2020-12) Huot, Joshua R.; Pin, Fabrizio; Narasimhan, Ashok; Novinger, Leah J.; Keith, Austin S.; Zimmers, Teresa A.; Willis, Monte S.; Bonetto, Andrea; Surgery, School of MedicineBackground: Advanced colorectal cancer (CRC) is often accompanied by the development of liver metastases, as well as cachexia, a multi-organ co-morbidity primarily affecting skeletal (SKM) and cardiac muscles. Activin receptor type 2B (ACVR2B) signalling is known to cause SKM wasting, and its inhibition restores SKM mass and prolongs survival in cancer. Using a recently generated mouse model, here we tested whether ACVR2B blockade could preserve multiple organs, including skeletal and cardiac muscle, in the presence of metastatic CRC. Methods: NSG male mice (8 weeks old) were injected intrasplenically with HCT116 human CRC cells (mHCT116), while sham-operated animals received saline (n = 5-10 per group). Sham and tumour-bearing mice received weekly injections of ACVR2B/Fc, a synthetic peptide inhibitor of ACVR2B. Results: mHCT116 hosts displayed losses in fat mass ( - 79%, P < 0.0001), bone mass ( - 39%, P < 0.05), and SKM mass (quadriceps: - 22%, P < 0.001), in line with reduced muscle cross-sectional area ( - 24%, P < 0.01) and plantarflexion force ( - 28%, P < 0.05). Further, despite only moderately affected heart size, cardiac function was significantly impaired (ejection fraction %: - 16%, P < 0.0001; fractional shortening %: - 25%, P < 0.0001) in the mHCT116 hosts. Conversely, ACVR2B/Fc preserved fat mass ( + 238%, P < 0.001), bone mass ( + 124%, P < 0.0001), SKM mass (quadriceps: + 31%, P < 0.0001), size (cross-sectional area: + 43%, P < 0.0001) and plantarflexion force ( + 28%, P < 0.05) in tumour hosts. Cardiac function was also completely preserved in tumour hosts receiving ACVR2B/Fc (ejection fraction %: + 19%, P < 0.0001), despite no effect on heart size. RNA sequencing analysis of heart muscle revealed rescue of genes related to cardiac development and contraction in tumour hosts treated with ACVR2B/Fc. Conclusions: Our metastatic CRC model recapitulates the multi-systemic derangements of cachexia by displaying loss of fat, bone, and SKM along with decreased muscle strength in mHCT116 hosts. Additionally, with evidence of severe cardiac dysfunction, our data support the development of cardiac cachexia in the occurrence of metastatic CRC. Notably, ACVR2B antagonism preserved adipose tissue, bone, and SKM, whereas muscle and cardiac functions were completely maintained upon treatment. Altogether, our observations implicate ACVR2B signalling in the development of multi-organ perturbations in metastatic CRC and further dictate that ACVR2B represents a promising therapeutic target to preserve body composition and functionality in cancer cachexia.Item Altered metabolite levels and correlations in patients with colorectal cancer and polyps detected using seemingly unrelated regression analysis(Springer Nature, 2017-11) Chen, Chen; Gowda, G. A. Nagana; Zhu, Jiangjiang; Deng, Lingli; Gu, Haiwei; Chiorean, E. Gabriela; Zaid, Mohammad Abu; Harrison, Marietta; Zhang, Dabao; Zhang, Min; Raftery, Daniel; Graduate Medical Education, IU School of MedicineIntroduction: Metabolomics technologies enable the identification of putative biomarkers for numerous diseases; however, the influence of confounding factors on metabolite levels poses a major challenge in moving forward with such metabolites for pre-clinical or clinical applications. Objectives: To address this challenge, we analyzed metabolomics data from a colorectal cancer (CRC) study, and used seemingly unrelated regression (SUR) to account for the effects of confounding factors including gender, BMI, age, alcohol use, and smoking. Methods: A SUR model based on 113 serum metabolites quantified using targeted mass spectrometry, identified 20 metabolites that differentiated CRC patients (n = 36), patients with polyp (n = 39), and healthy subjects (n = 83). Models built using different groups of biologically related metabolites achieved improved differentiation and were significant for 26 out of 29 groups. Furthermore, the networks of correlated metabolites constructed for all groups of metabolites using the ParCorA algorithm, before or after application of the SUR model, showed significant alterations for CRC and polyp patients relative to healthy controls. Results: The results showed that demographic covariates, such as gender, BMI, BMI2, and smoking status, exhibit significant confounding effects on metabolite levels, which can be modeled effectively. Conclusion: These results not only provide new insights into addressing the major issue of confounding effects in metabolomics analysis, but also shed light on issues related to establishing reliable biomarkers and the biological connections between them in a complex disease.Item BID mediates selective killing of APC-deficient cells in intestinal tumor suppression by nonsteroidal antiinflammatory drugs(PNAS, 2014-11-18) Leibowitz, Brian; Qiu, Wei; Buchanan, Monica E.; Zou, Fangdong; Vernon, Philip; Moyer, Mary P.; Yin, Xiao-Ming; Schoen, Robert E.; Yu, Jian; Zhang, Lin; Department of Pathology and Laboratory Medicine, IU School of MedicineColorectal tumorigenesis is driven by genetic alterations in the adenomatous polyposis coli (APC) tumor suppressor pathway and effectively inhibited by nonsteroidal antiinflammatory drugs (NSAIDs). However, how NSAIDs prevent colorectal tumorigenesis has remained obscure. We found that the extrinsic apoptotic pathway and the BH3 interacting-domain death agonist (BID) are activated in adenomas from NSAID-treated patients. Loss of BID abolishes NSAID-mediated tumor suppression, survival benefit, and apoptosis in tumor-initiating stem cells in APC(Min/+) mice. BID-mediated cross-talk between the extrinsic and intrinsic apoptotic pathways is responsible for selective killing of neoplastic cells by NSAIDs. We further demonstrate that NSAIDs induce death receptor signaling in both cancer and normal cells, but only activate BID in cells with APC deficiency and ensuing c-Myc activation. Our results suggest that NSAIDs suppress intestinal tumorigenesis through BID-mediated synthetic lethality triggered by death receptor signaling and gatekeeper mutations, and provide a rationale for developing more effective cancer prevention strategies and agents.Item Chromatin-associated APC regulates gene expression in collaboration with canonical WNT signaling and AP-1(Impact Journals, 2018-07-27) Hankey, William; Chen, Zhong; Bergman, Maxwell J.; Fernandez, Max O.; Hancioglu, Baris; Lan, Xun; Jegga, Anil G.; Zhang, Jie; Jin, Victor X.; Aronow, Bruce J.; Wang, Qianben; Groden, Joanna; Medical and Molecular Genetics, School of MedicineMutation of the APC gene occurs in a high percentage of colorectal tumors and is a central event driving tumor initiation in the large intestine. The APC protein performs multiple tumor suppressor functions including negative regulation of the canonical WNT signaling pathway by both cytoplasmic and nuclear mechanisms. Published reports that APC interacts with β-catenin in the chromatin fraction to repress WNT-activated targets have raised the possibility that chromatin-associated APC participates more broadly in mechanisms of transcriptional control. This screening study has used chromatin immunoprecipitation and next-generation sequencing to identify APC-associated genomic regions in colon cancer cell lines. Initial target selection was performed by comparison and statistical analysis of 3,985 genomic regions associated with the APC protein to whole transcriptome sequencing data from APC-deficient and APC-wild-type colon cancer cells, and two types of murine colon adenomas characterized by activated Wnt signaling. 289 transcripts altered in expression following APC loss in human cells were linked to APC-associated genomic regions. High-confidence targets additionally validated in mouse adenomas included 16 increased and 9 decreased in expression following APC loss, indicating that chromatin-associated APC may antagonize canonical WNT signaling at both WNT-activated and WNT-repressed targets. Motif analysis and comparison to ChIP-seq datasets for other transcription factors identified a prevalence of binding sites for the TCF7L2 and AP-1 transcription factors in APC-associated genomic regions. Our results indicate that canonical WNT signaling can collaborate with or antagonize the AP-1 transcription factor to fine-tune the expression of shared target genes in the colorectal epithelium. Future therapeutic strategies for APC-deficient colorectal cancers might be expanded to include agents targeting the AP-1 pathway.Item ColoType: a forty gene signature for consensus molecular subtyping of colorectal cancer tumors using whole-genome assay or targeted RNA-sequencing(Nature Publishing group, 2020-07-21) Buechler, Steven A.; Stephens, Melissa T.; Hummon, Amanda B.; Ludwig, Katelyn; Cannon, Emily; Carter, Tonia C.; Resnick, Jeffrey; Gökmen-Polar, Yesim; Badve, Sunil S.; Pathology and Laboratory Medicine, School of MedicineColorectal cancer (CRC) tumors can be partitioned into four biologically distinct consensus molecular subtypes (CMS1-4) using gene expression. Evidence is accumulating that tumors in different subtypes are likely to respond differently to treatments. However, to date, there is no clinical diagnostic test for CMS subtyping. In this study, we used novel methodology in a multi-cohort training domain (n = 1,214) to develop the ColoType scores and classifier to predict CMS1-4 based on expression of 40 genes. In three validation cohorts (n = 1,744, in total) representing three distinct gene-expression measurement technologies, ColoType predicted gold-standard CMS subtypes with accuracies 0.90, 0.91, 0.88, respectively. To accommodate for potential intratumoral heterogeneity and tumors of mixed subtypes, ColoType was designed to report continuous scores measuring the prevalence of each of CMS1–4 in a tumor, in addition to specifying the most prevalent subtype. For analysis of clinical specimens, ColoType was also implemented with targeted RNA-sequencing (Illumina AmpliSeq). In a series of formalin-fixed, paraffin-embedded CRC samples (n = 49), ColoType by targeted RNA-sequencing agreed with subtypes predicted by two independent methods with accuracies 0.92, 0.82, respectively. With further validation, ColoType by targeted RNA-sequencing, may enable clinical application of CMS subtyping with widely-available and cost-effective technology.Item Consensus molecular subtyping of colorectal cancers is influenced by goblet cell content(Elsevier, 2021) Miller, Samuel A.; Ghobashi, Ahmed H.; O'Hagan, Heather M.; Medical and Molecular Genetics, School of MedicineA critical obstacle in the field of colorectal cancer (CRC) is the establishment of precise tumor subtypes to facilitate the development of targeted therapeutic regimens. While dysregulated mucin production is a histopathological feature of multiple CRC subtypes, it is not clear how well these pathologies are associated with the proportion of goblet cells in the tumor, or whether or not this proportion is variable across all CRC. This study demonstrates that consensus molecular subtype 3 (CMS3) CRC tumors and cell lines are enriched for the expression of goblet cell marker genes. Further, the proportion of goblet cells in the tumor is associated with the probability of CMS3 subtype assignment and these CMS3 subtype tumors are mutually exclusive from mucinous adenocarcinoma pathologies. This study provides proof of principle for the use of machine learning classification systems to subtype tumors based on cellular content, and provides further context regarding the features weighing CMS3 subtype assignment.Item Correlating Irinotecan and Capecitabine Treatment for Colorectal Cancer to Gene Expression, Polymorphisms, and Clinical Outcomes(2011-03-16) Hinkle, David T., IV.; Harrington, Maureen A.; Chiorean, Elena G.; Sanghani, Sonal P.Colorectal cancer is the third most common type of cancer and the third most common cause of cancer-related mortality. There are three types of treatment available to patients, either individually or in combination. Treatments are radiation, chemotherapy, and surgery. In a Phase II clinical trial at IUSM, a multimodality approach was chosen. The patients with locally advanced rectal cancer received preoperative treatment with capecitabine and irinotecan (CPT-11) combination followed by chemoradiation with capecitabine and finally surgery to improve response and decrease local recurrence. Irinotecan and Capecitabine are both prodrugs activated in vivo to SN-38 and 5-FU, respectively. Identification of the molecular markers for 5-FU and Irinotecan efficacy and toxicity is important for the development of more efficient and less toxic treatment strategies for patients with colorectal cancer. The goal of this study was to determine the expression levels of the genes involved in activation and metabolism of capecitabine and irinotecan in pre and post treatment specimens from these patients. The genes quantitated by real-time PCR were carboxylesterase 1 and 2 (CES1 and CES2), thymidylate synthase (TS), β-glucoronidase (β-GUS), thymidine phosphorylase (TP), dihydropyrimidine dehydrogenase (DPD) and topoisomerase I (Topo I). The UGT1A1*28 polymorphism in UDP glucuronosyltransferase 1 is associated with SN-38 toxicity. Therefore, the UGT1A1*28 polymorphism status in patients was determined by PCR-sequencing. Correlative analysis of gene expression and UGT1A1*28 mutation with clinical outcome in this Phase II study was completed.Item Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo(Taylor & Francis, 2019-02) Fu, Yuanyuan; Hong, Liang; Xu, Jiecheng; Zhong, Guoping; Gu, Qiong; Gu, Qianqian; Guan, Yanping; Zheng, Xueping; Dai, Qi; Luo, Xia; Liu, Cui; Huang, Zhiying; Yin, Xiao-Ming; Liu, Peiqing; Li, Min; Pathology and Laboratory Medicine, School of MedicineHuman Atg4 homologs are cysteine proteases, which play key roles in the macroautophagy/autophagy process by cleaving Atg8 homologs for conjugation to lipid membranes and for deconjugation of Atg8 homologs from membranes. Expression of ATG4B is significantly increased in colorectal cancer cells compared to normal cells, suggesting that ATG4B may be important for cancer biology. Inhibition of ATG4B may reduce the autophagy activity, thereby sensitizing cancer cells to therapeutic agents. Thus, developing specific and potent ATG4B inhibitors for research as well as for potential therapeutic uses is highly needed. In this study, we integrated in silico screening and in vitro assays to discover a potent ATG4B inhibitor, named S130, from a noncommercial library. This chemical binds to ATG4B with strong affinity and specifically suppresses the activity of ATG4B but not other proteases. S130 did not cause the impairment of autophagosome fusion, nor did it result in the dysfunction of lysosomes. Instead, S130 might attenuate the delipidation of LC3-II on the autolysosomes to suppress the recycling of LC3-I, which normally occurs after LC3-II cleavage by ATG4B. Intriguingly, S130 induced cell death, which was accompanied with autophagy stress and could be further exacerbated by nutrient deprivation. Such cytotoxicity could be partially reversed by enhancing ATG4B activity. Finally, we found that S130 was distributed in tumor tissues in vivo and was also effective in arresting the growth of colorectal cancer cells. Thus, this study indicates that ATG4B is a potential anticancer target and S130 might be a novel small-molecule candidate for future cancer therapy.Item Drug resistance and new therapies in colorectal cancer(Baishideng, 2018-09-14) Van der Jeught, Kevin; Xu, Han-Chen; Li, Yu-Jing; Lu, Xiong-Bin; Ji, Guang; Medical and Molecular Genetics, School of MedicineColorectal cancer (CRC) is often diagnosed at an advanced stage when tumor cell dissemination has taken place. Chemo- and targeted therapies provide only a limited increase of overall survival for these patients. The major reason for clinical outcome finds its origin in therapy resistance. Escape mechanisms to both chemo- and targeted therapy remain the main culprits. Here, we evaluate major resistant mechanisms and elaborate on potential new therapies. Amongst promising therapies is α-amanitin antibody-drug conjugate targeting hemizygous p53 loss. It becomes clear that a dynamic interaction with the tumor microenvironment exists and that this dictates therapeutic outcome. In addition, CRC displays a limited response to checkpoint inhibitors, as only a minority of patients with microsatellite instable high tumors is susceptible. In this review, we highlight new developments with clinical potentials to augment responses to checkpoint inhibitors.