- Browse by Subject
Browsing by Subject "Fanconi Anemia"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers(American Association for Cancer Research, 2015-04-15) Lombardi, Anne J.; Hoskins, Elizabeth E.; Foglesong, Grant D.; Wikenheiser-Brokamp, Kathryn A.; Wiesmüller, Lisa; Hanenberg, Helmut; Andreassen, Paul R.; Jacobs, Allison J.; Olson, Susan B.; Keeble, Winifred W.; Hays, Laura E.; Wells, Susanne I.; Department of Medical & Molecular Genetics, IU School of MedicinePURPOSE: Fanconi anemia is an inherited disorder associated with a constitutional defect in the Fanconi anemia DNA repair machinery that is essential for resolution of DNA interstrand crosslinks. Individuals with Fanconi anemia are predisposed to formation of head and neck squamous cell carcinomas (HNSCC) at a young age. Prognosis is poor, partly due to patient intolerance of chemotherapy and radiation requiring dose reduction, which may lead to early recurrence of disease. EXPERIMENTAL DESIGN: Using HNSCC cell lines derived from the tumors of patients with Fanconi anemia, and murine HNSCC cell lines derived from the tumors of wild-type and Fancc(-/-) mice, we sought to define Fanconi anemia-dependent chemosensitivity and DNA repair characteristics. We utilized DNA repair reporter assays to explore the preference of Fanconi anemia HNSCC cells for non-homologous end joining (NHEJ). RESULTS: Surprisingly, interstrand crosslinker (ICL) sensitivity was not necessarily Fanconi anemia-dependent in human or murine cell systems. Our results suggest that the increased Ku-dependent NHEJ that is expected in Fanconi anemia cells did not mediate relative ICL resistance. ICL exposure resulted in increased DNA damage sensing and repair by PARP in Fanconi anemia-deficient cells. Moreover, human and murine Fanconi anemia HNSCC cells were sensitive to PARP inhibition, and sensitivity of human cells was attenuated by Fanconi anemia gene complementation. CONCLUSIONS: The observed reliance upon PARP-mediated mechanisms reveals a means by which Fanconi anemia HNSCCs can acquire relative resistance to the ICL-based chemotherapy that is a foundation of HNSCC treatment, as well as a potential target for overcoming chemoresistance in the chemosensitive individual.Item AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia(Oxford University Press, 2015-09-15) Virts, Elizabeth L.; Jankowska, Anna; Mackay, Craig; Glaas, Marcel F.; Wiek, Constanze; Kelich, Stephanie L.; Lottmann, Nadine; Kennedy, Felicia M.; Marchal, Christophe; Lehnert, Erik; Scharf, Rüdiger E.; Dufour, Carlo; Lanciotti, Marina; Farruggia, Piero; Santoro, Alessandra; Savasan, Süreyya; Scheckenbach, Kathrin; Schipper, Jörg; Wagenmann, Martin; Lewis, Todd; Leffak, Michael; Farlow, Janice L.; Foroud, Tatiana M.; Honisch, Ellen; Niederacher, Dieter; Chakraborty, Sujata C.; Vance, Gail H.; Pruss, Dmitry; Timms, Kirsten M.; Lanchbury, Jerry S.; Alpi, Arno F.; Hanenberg, Helmut; Department of Pediatrics, IU School of MedicineFanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2–6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2–6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2–6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene.Item FANCA maintains genomic stability through regulating BUBR1 acetylation(2017-06-22) Abdul Sater, Zahi Abass; Nalepa, Grzegorz; Clapp, Wade; Goebl, Mark; Wek, RonaldFanconi Anemia (FA), a chromosomal instability syndrome, is characterized by bone marrow failure, genetic malformations, and predisposition to malignancies like acute myeloid leukemia (AML) and solid tumors. FA is caused by germline bi-allelic mutations in one of 21 known FA pathway genes and somatic mutations in FA genes are also found in a variety of sporadic cancers. Recently, numerous reports have discovered that the protective function of the FA pathway extends beyond its canonical role in regulation of DNA repair in interphase. In particular, the FA pathway has been shown to function in essential mitotic processes including spindle assembly checkpoint (SAC), cytokinesis, and centrosome maintenance. Understanding of the mechanistic origins of genomic instability leading to carcinogenesis and bone marrow failure has important scientific and clinical implications. To this end, using a micronucleus assay, we showed that both interphase DNA damage and mitotic errors contribute to genomic instability in FA ex vivo and in vivo. Functional studies of primary FA patient cells coupled with super-resolution microscopy revealed that FANCA is important for centrosome dependent spindle assembly supporting the protective role of FA pathway in mitotic processes. Furthermore, we dissected the interactions between the FA pathway and cellular kinase networks by employing a synthetic lethality sh-RNA screen targeting all human kinases. We mapped kinases that were synthetically lethal upon loss of FANCA, particularly those involved in highly conserved signal transduction pathways governing proliferation and cell cycle homeostasis. We mechanistically show that loss of FANCA, the most abundant FA subtype, results in in premature degradation of the mitotic kinase BUBR1 and faster mitotic exit. We further demonstrate that FANCA is important for PCAF-dependent acetylation of BUBR1 to prevent its premature degradation. Our results deepen our understanding of the molecular functions of the FA pathway in mitosis and uncover a mechanistic connection between FANCA and SAC phosphosignaling networks. These findings support the notion that further weakening the SAC through targeting kinases like BUBR1 in FA-deficient cancers may prove to be a rational therapeutic strategy.Item FANCA safeguards interphase and mitosis during hematopoiesis in vivo(Elsevier, 2015-12) Abdul-Sater, Zahi; Cerabona, Donna; Potchanant, Elizabeth Sierra; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W. Scott; Nalepa, Grzegorz; Department of Pediatrics, IU School of MedicineThe Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in nonhematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA crosslinking and anti-mitotic chemotherapeutics in primary FANCA-/- cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers.Item Leukemia and chromosomal instability in aged Fancc-/- mice(Elsevier, 2016-05) Cerabona, Donna; Sun, Zejin; Nalepa, Grzegorz; Department of Pediatrics, IU School of MedicineFanconi anemia (FA) is an inherited disorder of genomic instability associated with high risk of myelodysplasia and acute myeloid leukemia (AML). Young mice deficient in FA core complex genes do not naturally develop cancer, hampering preclinical studies on malignant hematopoiesis in FA. Here we describe that aging Fancc(-/-) mice are prone to genomically unstable AML and other hematologic neoplasms. We report that aneuploidy precedes malignant transformation during Fancc(-/-) hematopoiesis. Our observations reveal that Fancc(-/-) mice develop hematopoietic chromosomal instability followed by leukemia in an age-dependent manner, recapitulating the clinical phenotype of human FA and providing a proof of concept for future development of preclinical models of FA-associated leukemogenesis.Item Molecular analysis of Fanconi anemia: the experience of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Onco-Hematology(Ferrata Storti Foundation, 2014-06) De Rocco, Daniela; Bottega, Roberta; Cappelli, Enrico; Cavani, Simona; Criscuolo, Maria; Nicchia, Elena; Corsolini, Fabio; Greco, Chiara; Borriello, Adriana; Svahn, Johanna; Pillon, Marta; Mecucci, Cristina; Casazza, Gabriella; Verzegnassi, Federico; Cugno, Chiara; Locasciulli, Anna; Farruggia, Piero; Longoni, Daniela; Ramenghi, Ugo; Barberi, Walter; Tucci, Fabio; Perrotta, Silverio; Grammatico, Paola; Hanenberg, Helmut; Ragione, Fulvio Della; Dufour, Carlo; Savoia, Anna; Department of Pediatrics, IU School of MedicineFanconi anemia is an inherited disease characterized by congenital malformations, pancytopenia, cancer predisposition, and sensitivity to cross-linking agents. The molecular diagnosis of Fanconi anemia is relatively complex for several aspects including genetic heterogeneity with mutations in at least 16 different genes. In this paper, we report the mutations identified in 100 unrelated probands enrolled into the National Network of the Italian Association of Pediatric Hematoly and Oncology. In approximately half of these cases, mutational screening was carried out after retroviral complementation analyses or protein analysis. In the other half, the analysis was performed on the most frequently mutated genes or using a next generation sequencing approach. We identified 108 distinct variants of the FANCA, FANCG, FANCC, FANCD2, and FANCB genes in 85, 9, 3, 2, and 1 families, respectively. Despite the relatively high number of private mutations, 45 of which are novel Fanconi anemia alleles, 26% of the FANCA alleles are due to 5 distinct mutations. Most of the mutations are large genomic deletions and nonsense or frameshift mutations, although we identified a series of missense mutations, whose pathogenetic role was not always certain. The molecular diagnosis of Fanconi anemia is still a tiered procedure that requires identifying candidate genes to avoid useless sequencing. Introduction of next generation sequencing strategies will greatly improve the diagnostic process, allowing a rapid analysis of all the genes.