- Browse by Subject
Browsing by Subject "Insulin secretion"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Cigarette smoke exposure impairs β-cell function through activation of oxidative stress and ceramide accumulation(Elsevier, 2020-07) Tong, Xin; Chaudhry, Zunaira; Lee, Chih-Chun; Bone, Robert N.; Kanojia, Sukrati; Maddatu, Judith; Sohn, Paul; Weaver, Staci A.; Robertson, Morgan A.; Petrache, Irina; Evans-Molina, Carmella; Kono, Tatsuyoshi; Medicine, School of MedicineObjectives Epidemiological studies indicate that first- and second-hand cigarette smoke (CS) exposure are important risk factors for the development of type 2 diabetes (T2D). Additionally, elevated diabetes risk has been reported to occur within a short period of time after smoking cessation, and health risks associated with smoking are increased when combined with obesity. At present, the mechanisms underlying these associations remain incompletely understood. The objective of this study was to test the impact of CS exposure on pancreatic β-cell function using rodent and in vitro models. Methods Beginning at 8 weeks of age, C57BL/6 J mice were concurrently fed a high-fat diet (HFD) and exposed to CS for 11 weeks, followed by an additional 11 weeks of smoking cessation with continued HFD. Glucose tolerance testing was performed during CS exposure and during the cessation period. Cultured INS-1 β-cells and primary islets were exposed ex vivo to CS extract (CSE), and β-cell function and viability were tested. Since CS increases ceramide accumulation in the lung and these bioactive sphingolipids have been implicated in pancreatic β-cell dysfunction in diabetes, islet and β-cell sphingolipid levels were measured in islets from CS-exposed mice and in CSE-treated islets and INS-1 cells using liquid chromatography-tandem mass spectrometry. Results Compared to HFD-fed, ambient air-exposed mice, HFD-fed and CS-exposed mice had reduced weight gain and better glucose tolerance during the active smoking period. Following smoking cessation, CS-mice exhibited rapid weight gain and had accelerated worsening of their glucose tolerance. CS-exposed mice had higher serum proinsulin/insulin ratios, indicative of β-cell dysfunction, significantly lower β-cell mass (p = 0.017), reduced β-cell proliferation (p = 0.006), and increased islet ceramide content compared to non-smoking control mice. Ex vivo exposure of isolated islets to CSE was sufficient to increase islet ceramide levels, which was correlated with reduced insulin gene expression and glucose-stimulated insulin secretion, and increased β-cell oxidative and endoplasmic reticulum (ER) stress. Treatment with the antioxidant N-acetylcysteine markedly attenuated the effects of CSE on ceramide levels, restored β-cell function and survival, and increased cyclin D2 expression, while also reducing activation of β-cell ER and oxidative stress. Conclusions Our results indicate that CS exposure leads to impaired insulin production, processing, secretion and reduced β-cell viability and proliferation. These effects were linked to increased β-cell oxidative and ER stress and ceramide accumulation. Mice fed HFD continued to experience detrimental effects of CS exposure even during smoking cessation. Elucidation of the mechanisms by which CS exposure impairs β-cell function in synergy with obesity will help design therapeutic and preventive interventions for both active and former smokers.Item Depressive symptoms and metabolic markers of risk for type 2 diabetes in obese adolescents(Wiley, 2013-11) Hannon, Tamara S.; Rofey, Dana L.; Lee, SoJung; Arslanian, Silva A.; Pediatrics, School of MedicineOBJECTIVE: Although higher rates of depression are found among individuals with type 2 diabetes, it remains unknown if the presence of depressive symptoms is associated with heightened metabolic risk for the development of type 2 diabetes among youth. The objective of this study was to evaluate whether depressive symptoms in obese adolescents are associated with impaired β-cell function relative to insulin sensitivity [oral disposition index (oDI)] and/or dysglycemia or prediabetes, predictors of type 2 diabetes development. RESEARCH DESIGN AND METHODS: Fasting and oral glucose tolerance test (OGTT)-derived indices of glucose tolerance, insulin sensitivity, secretion, and oDI were evaluated in obese youth (n = 56, age 15.0 ± 1.6 yr, 68% female). The Children's Depression Inventory was utilized to determine depressive symptomatology. RESULTS: Despite no association between depressive symptoms and measures of adiposity, youth with higher depressive symptoms had (i) significantly higher fasting and stimulated glucose levels (13% higher glucose area under the OGTT curve), (ii) ∼50% lower oDI, and (iii) a 50% frequency of prediabetes. CONCLUSIONS: These data point to an important relationship between depressive symptoms and a heightened metabolic risk for type 2 diabetes in obese adolescents, including prediabetes and impairment in β-cell function relative to insulin sensitivity. While the directionality of these relationships is unknown, it should be determined if treating one disorder improves the other or vice versa.Item DOC2B enhancement of beta cell function and survival(2018-03-08) Aslamy, Arianne; Thurmond, Debbie C.; Elmendorf, Jeffrey S.; Evans-Molina, Carmella; Baucum, Anthony J.Diabetes mellitus is a complex metabolic disease that currently affects an estimated 422 million people worldwide, with incidence rates rising annually. Type 1 diabetes (T1D) accounts for 5-10% of these cases. Its complications remain a major cause of global deaths. T1D is characterized by autoimmune destruction of β-cell mass. Efforts to preserve and protect β-cell mass in the preclinical stages of T1D are limited by few blood-borne biomarkers of β-cell destruction. In healthy β-cells, insulin secretion requires soluble n-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complexes and associated accessory regulatory proteins to promote the docking and fusion of insulin vesicles at the plasma membrane. Two target membrane (t)-SNARE proteins, Syntaxin 1/4 and SNAP25/23, and one vesicle-associated (v)-SNARE protein, VAMP2, constitute the SNARE core complex. SNARE complex assembly is also facilitated by the regulatory protein, Double C2-domain protein β (DOC2B). I hypothesized that DOC2B deficiency may underlie β-cell susceptibility to T1D damage; conversely , overexpression of DOC2B may protect β-cell mass. Indeed, with regard to DOC2B abundance, my studies show reduced levels of DOC2B in platelets and islets of prediabetic rodents and new-onset T1D humans. Remarkably, clinical islet transplantation in T1D humans restores platelet DOC2B levels, indicating a correlation With regard to protection/functional effects, DOC2B deficiency enhances susceptibility to T1D in mice, while overexpression of DOC2B selectively in β-cells protects mice from chemically induced T1D; this correlates with preservation of functional β-cell mass. Mechanistically, overexpression of DOC2B and the DOC2B peptide, C2AB, protects clonal β-cell against cytokine or thapsigargin-induced apoptosis and reduces ER stress; this is dependent on C2AB’s calcium binding capacity. C2AB is sufficient to enhance glucose stimulated insulin secretion (GSIS) and SNARE activation in clonal β-cells to the same extent as full-length DOC2B. In summary, these studies identify DOC2B as a potential biomarker and novel therapeutic target for prevention/management of T1D.Item Doc2b enrichment enhances glucose homeostasis in mice via potentiation of insulin secretion and peripheral insulin sensitivity.(Springer, 2014-07) Ramalingam, Latha; Oh, Eunjin; Thurmond, Debbie C.; Biochemistry & Molecular Biology, School of MedicineAIMS/HYPOTHESIS: Insulin secretion from pancreatic beta cells and insulin-stimulated glucose uptake into skeletal muscle are processes regulated by similar isoforms of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) and mammalian homologue of unc-18 (Munc18) protein families. Double C2 domain β (Doc2b), a SNARE- and Munc18-interacting protein, is implicated as a crucial effector of glycaemic control. However, whether Doc2b is naturally limiting for these processes, and whether Doc2b enrichment might exert a beneficial effect upon glycaemia in vivo, remains undetermined. METHODS: Tetracycline-repressible transgenic (Tg) mice engineered to overexpress Doc2b simultaneously in the pancreas, skeletal muscle and adipose tissues were compared with wild-type (Wt) littermate mice regarding glucose and insulin tolerance, islet function in vivo and ex vivo, and skeletal muscle GLUT4 accumulation in transverse tubule/sarcolemmal surface membranes. SNARE complex formation was further assessed using Doc2b overexpressing L6-GLUT4-myc myoblasts to derive mechanisms relatable to physiological in vivo analyses. RESULTS: Doc2b Tg mice cleared glucose substantially faster than Wt mice, correlated with enhancements in both phases of insulin secretion and peripheral insulin sensitivity. Heightened peripheral insulin sensitivity correlated with elevated insulin-stimulated GLUT4 vesicle accumulation in cell surface membranes of Doc2b Tg mouse skeletal muscle. Mechanistic studies demonstrated Doc2b enrichment to enhance syntaxin-4-SNARE complex formation in skeletal muscle cells. CONCLUSIONS/INTERPRETATION: Doc2b is a limiting factor in SNARE exocytosis events pertinent to glycaemic regulation in vivo. Doc2b enrichment may provide a novel means to simultaneously boost islet and skeletal muscle function in vivo in the treatment and/or prevention of diabetes.Item Insulin Tactics in Type 2 Diabetes(Elsevier, 2015-01) Meah, Farah; Juneja, Rattan; Department of Medicine, IU School of MedicineItem The p21-activated kinase (PAK1) is involved in diet-induced beta cell mass expansion and survival in mice and human islets(Springer, 2016-10) Ahn, Miwon; Yoder, Stephanie M.; Wang, Zhanxiang; Oh, Eunjin; Ramalingam, Latha; Tunduguru, Ragadeepthi; Thurmond, Debbie C.; Department of Pediatrics, IU School of MedicineAIMS/HYPOTHESIS: Human islets from type 2 diabetic donors are reportedly 80% deficient in the p21 (Cdc42/Rac)-activated kinase, PAK1. PAK1 is implicated in beta cell function and maintenance of beta cell mass. We questioned the mechanism(s) by which PAK1 deficiency potentially contributes to increased susceptibility to type 2 diabetes. METHODS: Non-diabetic human islets and INS 832/13 beta cells cultured under diabetogenic conditions (i.e. with specific cytokines or under glucolipotoxic [GLT] conditions) were evaluated for changes to PAK1 signalling. Combined effects of PAK1 deficiency with GLT stress were assessed using classic knockout (Pak1 (-/-) ) mice fed a 45% energy from fat/palmitate-based, 'western' diet (WD). INS 832/13 cells overexpressing or depleted of PAK1 were also assessed for apoptosis and signalling changes. RESULTS: Exposure of non-diabetic human islets to diabetic stressors attenuated PAK1 protein levels, concurrent with increased caspase 3 cleavage. WD-fed Pak1 knockout mice exhibited fasting hyperglycaemia and severe glucose intolerance. These mice also failed to mount an insulin secretory response following acute glucose challenge, coinciding with a 43% loss of beta cell mass when compared with WD-fed wild-type mice. Pak1 knockout mice had fewer total beta cells per islet, coincident with decreased beta cell proliferation. In INS 832/13 beta cells, PAK1 deficiency combined with GLT exposure heightened beta cell death relative to either condition alone; PAK1 deficiency resulted in decreased extracellular signal-related kinase (ERK) and B cell lymphoma 2 (Bcl2) phosphorylation levels. Conversely, PAK1 overexpression prevented GLT-induced cell death. CONCLUSIONS/INTERPRETATION: These findings suggest that PAK1 deficiency may underlie an increased diabetic susceptibility. Discovery of ways to remediate glycaemic dysregulation via altering PAK1 or its downstream effectors offers promising opportunities for disease intervention.Item Pancreatic and Islet Development and Function: The Role of Thyroid Hormone(JSciMed Central, 2014) Mastracci, Teresa L.; Evans-Molina, Carmella; Department of Pediatrics, IU School of MedicineA gradually expanding body of literature suggests that Thyroid Hormone (TH) and Thyroid Hormone Receptors (TRs) play a contributing role in pancreatic and islet cell development, maturation, and function. Studies using a variety of model systems capable of exploiting species-specific developmental paradigms have revealed the contribution of TH to cellular differentiation, lineage decisions, and endocrine cell specification. Moreover, in vitro and in vivo evidence suggests that TH is involved in islet β cell proliferation and maturation; however, the signaling pathway(s) connected with this function of TH/TR are not well understood. The purpose of this review is to discuss the current literature that has defined the effects of TH and TRs on pancreatic and islet cell development and function, describe the impact of hyper- and hypothyroidism on whole body metabolism, and highlight future and potential applications of TH in novel therapeutic strategies for diabetes.Item Pancreatic β-cell dysfunction in polycystic ovary syndrome: role of hyperglycemia-induced nuclear factor-κB activation and systemic inflammation(American Physiological Society, 2015-05) Malin, Steven K.; Kirwan, John P.; Sia, Chang Ling; Gonzalez, Frank; Department of Obstetrics and Gynecology, IU School of MedicineIn polycystic ovary syndrome (PCOS), oxidative stress is implicated in the development of β-cell dysfunction. However, the role of mononuclear cell (MNC)-derived inflammation in this process is unclear. We determined the relationship between β-cell function and MNC-derived nuclear factor-κB (NF-κB) activation and tumor necrosis factor-α (TNF-α) secretion in response to a 2-h 75-g oral glucose tolerance test (OGTT) in normoglycemic women with PCOS (15 lean, 15 obese) and controls (16 lean, 14 obese). First- and second-phase β-cell function was calculated as glucose-stimulated insulin secretion (insulin/glucose area under the curve for 0-30 and 60-120 min, respectively) × insulin sensitivity (Matsuda Index derived from the OGTT). Glucose-stimulated NF-κB activation and TNF-α secretion from MNC, and fasting plasma thiobarbituric acid-reactive substances (TBARS) and high-sensitivity C-reactive protein (hs-CRP) were also assessed. In obese women with PCOS, first- and second-phase β-cell function was lower compared with lean and obese controls. Compared with lean controls, women with PCOS had greater change from baseline in NF-κB activation and TNF-α secretion, and higher plasma TBARS. β-Cell function was inversely related to NF-κB activation (1st and 2nd) and TNF-α secretion (1st), and plasma TBARS and hs-CRP (1st and 2nd). First- and second-phase β-cell function also remained independently linked to NF-κB activation after adjustment for body fat percentage and TBARS. In conclusion, β-cell dysfunction in PCOS is linked to hyperglycemia-induced NF-κB activation from MNC and systemic inflammation. These data suggest that in PCOS, inflammation may play a role in impairing insulin secretion before the development of overt hyperglycemia.Item Sirtuin 6 regulates glucose-stimulated insulin secretion in mouse pancreatic beta cells(Springer, 2016-01) Xiong, Xiwen; Wang, Gaihong; Tao, Rongya; Wu, Pengfei; Kono, Tatsuyoshi; Li, Kevin; Ding, Wen-Xing; Tong, Xin; Tersey, Sarah A.; Harris, Robert A.; Mirmira, Raghavendra G.; Evans-Molina, Carmella; Dong, X. Charlie; Department of Biochemistry & Molecular Biology, IU School of MedicineAIMS/HYPOTHESIS: Sirtuin 6 (SIRT6) has been implicated in ageing, DNA repair and metabolism; however, its function in pancreatic beta cells is unclear. The aim of this study is to elucidate the role of SIRT6 in pancreatic beta cells. METHODS: To investigate the function of SIRT6 in pancreatic beta cells, we performed Sirt6 gene knockdown in MIN6 cells and generated pancreatic- and beta cell-specific Sirt6 knockout mice. Islet morphology and glucose-stimulated insulin secretion (GSIS) were analysed. Glycolysis and oxygen consumption rates in SIRT6-deficient beta cells were measured. Cytosolic calcium was monitored using the Fura-2-AM fluorescent probe (Invitrogen, Grand Island, NY, USA). Mitochondria were analysed by immunoblots and electron microscopy. RESULTS: Sirt6 knockdown in MIN6 beta cells led to a significant decrease in GSIS. Pancreatic beta cell Sirt6 knockout mice showed a ~50% decrease in GSIS. The knockout mouse islets had lower ATP levels compared with the wild-type controls. Mitochondrial oxygen consumption rates were significantly decreased in the SIRT6-deficient beta cells. Cytosolic calcium dynamics in response to glucose or potassium chloride were attenuated in the Sirt6 knockout islets. Numbers of damaged mitochondria were increased and mitochondrial complex levels were decreased in the SIRT6-deficient islets. CONCLUSIONS/INTERPRETATION: These data suggest that SIRT6 is important for GSIS from pancreatic beta cells and activation of SIRT6 may be useful to improve insulin secretion in diabetes.