- Browse by Subject
Browsing by Subject "Interferon-beta"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Analyses of the pathways involved in early- and late-phase induction of IFN-beta during C. muridarum infection of oviduct epithelial cells(PLoS, 2015-03-23) Hu, Sishun; Hosey, Kristen L.; Derbigny, Wilbert A.; Department of Microbiology and Immunology, IU School of MedicineWe previously reported that the IFN-β secreted by Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) was mostly dependent on the TLR3 signaling pathway. To further characterize the mechanisms of IFN-β synthesis during Chlamydia infection of OE cells in vitro, we utilized specific inhibitory drugs to clarify the roles of IRF3 and NF-κB on both early- and late-phase C. muridarum infections. Our results showed that the pathways involved in the early-phase of IFN-β production were distinct from that in the late-phase of IFN-β production. Disruption of IRF3 activation using an inhibitor of TBK-1 at early-phase Chlamydia infection had a significant impact on the overall synthesis of IFN-β; however, disruption of IRF3 activation at late times during infection had no effect. Interestingly, inhibition of NF-κB early during Chlamydia infection also had a negative effect on IFN-β production; however, its impact was not significant. Our data show that the transcription factor IRF7 was induced late during Chlamydia infection, which is indicative of a positive feedback mechanism of IFN-β synthesis late during infection. In contrast, IRF7 appears to play little or no role in the early synthesis of IFN-β during Chlamydia infection. Finally, we demonstrate that antibiotics that target chlamydial DNA replication are much more effective at reducing IFN-β synthesis during infection versus antibiotics that target chlamydial transcription. These results provide evidence that early- and late-phase IFN-β production have distinct signaling pathways in Chlamydia-infected OE cells, and suggest that Chlamydia DNA replication might provide a link to the currently unknown chlamydial PAMP for TLR3.Item Role of STAT1 in Chlamydia-Induced Type-1 Interferon Production in Oviduct Epithelial Cells(Mary Ann Liebert, 2015-11) Hosey, Kristen Lynette; Hu, Sishun; Derbigny, Wilbert Alfred; Department of Microbiology & Immunology, IU School of MedicineWe previously reported that Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) secrete interferon β (IFN-β) in a mostly TLR3-dependent manner. However, C. muridarum-infected TLR3-deficient OE cells were still able to secrete detectable levels of IFN-β into the supernatants, suggesting that other signaling pathways contribute to Chlamydia-induced IFN-β synthesis in these cells. We investigated the role of STAT1 as a possible contributor in the Chlamydia-induced type-1 IFN production in wild-type (WT) and TLR3-deficient OE cells to ascertain its putative role at early- and late-times during Chlamydia infection. Our data show that C. muridarum infection significantly increased STAT1 gene expression and protein activation in WT OE cells; however, TLR3-deficient OE cells showed diminished STAT1 protein activation and gene expression. There was significantly less IFN-β detected in the supernatants of C. muridarum-infected OE cells derived from mice deficient in STAT1 when compared with WT OE cells, which suggest that STAT1 is required for the optimal synthesis of IFN-β during infection. Real-time quantitative polymerase chain reaction analyses of signaling components of the type-1 IFN signaling pathway demonstrated equal upregulation in the expression of STAT2 and IRF7 genes in the WT and TLR3-deficient OE cells, but no upregulation in these genes in the STAT1-deficient OE cells. Finally, experiments in which INFAR1 was blocked with neutralizing antibody revealed that IFNAR1-mediated signaling was critical to the Chlamydia-induced upregulation in IFN-α gene transcription, but had no role in the Chlamydia-induced upregulation in IFN-β gene transcription.