- Browse by Subject
Browsing by Subject "Intestinal mucosa"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice(American Diabetes Association, 2018-09) Beli, Eleni; Yan, Yuanqing; Moldovan, Leni; Vieira, Cristiano P.; Gao, Ruli; Duan, Yaqian; Prasad, Ram; Bhatwadekar, Ashay; White, Fletcher A.; Townsend, Steven D.; Chan, Luisa; Ryan, Caitlin N.; Morton, Daniel; Moldovan, Emil G.; Chu, Fang-I; Oudit, Gavin Y.; Derendorf, Hartmut; Adorini, Luciano; Wang, Xiaoxin X.; Evans-Molina, Carmella; Mirmira, Raghavendra G.; Boulton, Michael E.; Yoder, Mervin C.; Li, Qiuhong; Levi, Moshe; Busik, Julia V.; Grant, Maria B.; Pediatrics, School of MedicineIntermittent fasting (IF) protects against the development of metabolic diseases and cancer, but whether it can prevent diabetic microvascular complications is not known. In db/db mice, we examined the impact of long-term IF on diabetic retinopathy (DR). Despite no change in glycated hemoglobin, db/db mice on the IF regimen displayed significantly longer survival and a reduction in DR end points, including acellular capillaries and leukocyte infiltration. We hypothesized that IF-mediated changes in the gut microbiota would produce beneficial metabolites and prevent the development of DR. Microbiome analysis revealed increased levels of Firmicutes and decreased Bacteroidetes and Verrucomicrobia. Compared with db/db mice on ad libitum feeding, changes in the microbiome of the db/db mice on IF were associated with increases in gut mucin, goblet cell number, villi length, and reductions in plasma peptidoglycan. Consistent with the known modulatory effects of Firmicutes on bile acid (BA) metabolism, measurement of BAs demonstrated a significant increase of tauroursodeoxycholate (TUDCA), a neuroprotective BA, in db/db on IF but not in db/db on AL feeding. TGR5, the TUDCA receptor, was found in the retinal primary ganglion cells. Expression of TGR5 did not change with IF or diabetes. However, IF reduced retinal TNF-α mRNA, which is a downstream target of TGR5 activation. Pharmacological activation of TGR5 using INT-767 prevented DR in a second diabetic mouse model. These findings support the concept that IF prevents DR by restructuring the microbiota toward species producing TUDCA and subsequent retinal protection by TGR5 activation.Item Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response(Springer Nature, 2019-01-03) Haberman, Yael; Karns, Rebekah; Dexheimer, Phillip J.; Schirmer, Melanie; Somekh, Judith; Jurickova, Ingrid; Braun, Tzipi; Novak, Elizabeth; Bauman, Laura; Collins, Margaret H.; Mo, Angela; Rosen, Michael J.; Bonkowski, Erin; Gotman, Nathan; Marquis, Alison; Nistel, Mason; Rufo, Paul A.; Baker, Susan S.; Sauer, Cary G.; Markowitz, James; Pfefferkorn, Marian D.; Rosh, Joel R.; Boyle, Brendan M.; Mack, David R.; Baldassano, Robert N.; Shah, Sapana; Leleiko, Neal S.; Heyman, Melvin B.; Grifiths, Anne M.; Patel, Ashish S.; Noe, Joshua D.; Aronow, Bruce J.; Kugathasan, Subra; Walters, Thomas D.; Gibson, Greg; Thomas, Sonia Davis; Mollen, Kevin; Shen-Orr, Shai; Huttenhower, Curtis; Xavier, Ramnik J.; Hyams, Jeffrey S.; Denson, Lee A.; Pediatrics, School of MedicineMolecular mechanisms driving disease course and response to therapy in ulcerative colitis (UC) are not well understood. Here, we use RNAseq to define pre-treatment rectal gene expression, and fecal microbiota profiles, in 206 pediatric UC patients receiving standardised therapy. We validate our key findings in adult and paediatric UC cohorts of 408 participants. We observe a marked suppression of mitochondrial genes and function across cohorts in active UC, and that increasing disease severity is notable for enrichment of adenoma/adenocarcinoma and innate immune genes. A subset of severity genes improves prediction of corticosteroid-induced remission in the discovery cohort; this gene signature is also associated with response to anti-TNFα and anti-α4β7 integrin in adults. The severity and therapeutic response gene signatures were in turn associated with shifts in microbes previously implicated in mucosal homeostasis. Our data provide insights into UC pathogenesis, and may prioritise future therapies for nonresponders to current approaches.