- Browse by Subject
Browsing by Subject "Malaria"
Now showing 1 - 10 of 50
Results Per Page
Sort Options
Item The ACT Malaria Treatment Policy Change in Kenya(Association of Kenya Physicians, 2007) Akhwale, Willis S.; Association of Kenya Physicians Scientific Conference (11th : Mar. 2007 : Eldoret, Kenya)Objectives of the national Antimalarial treatment policy: •Enable population at risk access safe, good quality, effective, affordable & acceptable antimalarial drugs •Ensure rapid and long lasting clinical cure •Prevent progression to severe disease •Reduce the incidence of anaemia •Reduce consequences of placental malaria infection •Delay development of resistance to antimalarial drugs Key specific issues: •Limited data available on safety of ACTs in young infants (use of coartem <5kgs) •Lack of adequate safety and efficacy data on drug combinations in pregnant women (safety of lumefantrine in pregnancy) •Improving systems of forecasting of drug needs •Strengthening the management and drug supply system (procurement, distribution and use) according to the specificities of the new drugs (shorter shelf life and the course-of-therapy packs) •Complex treatment schedules poses challenge for ensuring compliance •Need for more friendly paediatric formulationsItem Acute kidney injury in Ugandan children with severe malaria is associated with long-term behavioral problems(Public Library of Science, 2019-12-17) Hickson, Meredith R.; Conroy, Andrea L.; Bangirana, Paul; Opoka, Robert O.; Idro, Richard; Ssenkusu, John M.; John, Chandy C.; Pediatrics, School of MedicineBackground Acute kidney injury (AKI) is a risk factor for neurocognitive impairment in severe malaria (SM), but the impact of AKI on long-term behavioral outcomes following SM is unknown. Methods We conducted a prospective study on behavioral outcomes of Ugandan children 1.5 to 12 years of age with two forms of severe malaria, cerebral malaria (CM, n = 226) or severe malarial anemia (SMA, n = 214), and healthy community children (CC, n = 173). AKI was defined as a 50% increase in creatinine from estimated baseline. Behavior and executive function were assessed at baseline and 6, 12, and 24 months later using the Child Behavior Checklist and Behavior Rating Inventory of Executive Function, respectively. Age-adjusted z-scores were computed for each domain based on CC scores. The association between AKI and behavioral outcomes was evaluated across all time points using linear mixed effect models, adjusting for sociodemographic variables and disease severity. Results AKI was present in 33.2% of children with CM or SMA at baseline. Children ≥6 years of age with CM or SMA who had AKI on admission had worse scores in socio-emotional function in externalizing behaviors (Beta (95% CI), 0.52 (0.20, 0.85), p = 0.001), global executive function (0.48 (0.15, 0.82), p = 0.005) and behavioral regulation (0.66 (0.32, 1.01), p = 0.0002) than children without AKI. There were no behavioral differences associated with AKI in children <6 years of age. Conclusions AKI is associated with long-term behavioral problems in children ≥6 years of age with CM or SMA, irrespective of age at study enrollment.Item Acute kidney injury is associated with impaired cognition and chronic kidney disease in a prospective cohort of children with severe malaria(Springer Nature, 2019-05-21) Conroy, Andrea L.; Opoka, Robert O.; Bangirana, Paul; Idro, Richard; Ssenkusu, John M.; Datta, Dibyadyuti; Hodges, James S.; Morgan, Catherine; John, Chandy C.; Pediatrics, School of MedicineBACKGROUND: Acute kidney injury (AKI) is a recognized complication of pediatric severe malaria, but its long-term consequences are unknown. METHODS: Ugandan children with cerebral malaria (CM, n = 260) and severe malaria anemia (SMA, n = 219) or community children (CC, n = 173) between 1.5 and 12 years of age were enrolled in a prospective cohort study. Kidney Disease: Improving Global Outcomes (KDIGO) criteria were used to retrospectively define AKI and chronic kidney disease (CKD). Cognitive testing was conducted using the Mullen Scales of Early Learning in children < 5 and Kaufman Assessment Battery for Children (K-ABC) second edition in children ≥ 5 years of age. RESULTS: The prevalence of AKI was 35.1%, ranging from 25.1% in SMA to 43.5% in CM. In-hospital mortality was 11.9% in AKI compared to 4.2% in children without AKI (p = 0.001), and post-discharge mortality was 4.7% in AKI compared to 1.3% in children without AKI (p = 0.030) corresponding to an all-cause adjusted hazard ratio of 2.30 (95% CI 1.21, 4.35). AKI was a risk factor for short- and long-term neurocognitive impairment. At 1 week post-discharge, the frequency of neurocognitive impairment was 37.3% in AKI compared to 13.5% in children without AKI (adjusted odds ratio (aOR) 2.31 [95% CI 1.32, 4.04]); at 1-year follow-up, it was 13.3% in AKI compared to 3.4% in children without AKI (aOR 2.48 [95% CI 1.01, 6.10]), and at 2-year follow-up, it was 13.0% in AKI compared to 3.4% in children without AKI (aOR 3.03 [95% CI 1.22, 7.58]). AKI was a risk factor for CKD at 1-year follow-up: 7.6% of children with severe malaria-associated AKI had CKD at follow-up compared to 2.8% of children without AKI (p = 0.038) corresponding to an OR of 2.81 (95% CI 1.02, 7.73). The presenting etiology of AKI was consistent with prerenal azotemia, and lactate dehydrogenase as a marker of intravascular hemolysis was an independent risk factor for AKI in CM and SMA (p < 0.0001). In CM, AKI was associated with the presence and severity of retinopathy (p < 0.05) and increased cerebrospinal fluid albumin suggestive of blood-brain barrier disruption. CONCLUSIONS: AKI is a risk factor for long-term neurocognitive impairment and CKD in pediatric severe malaria.Item Admission EEG findings in diverse paediatric cerebral malaria populations predict outcomes(BMC, 2018-05-22) Postels, Douglas G.; Wu, Xiaoting; Li, Chenxi; Kaplan, Peter W.; Seydel, Karl B.; Taylor, Terrie E.; Kousa, Youssef A.; Idro, Richard; Opoka, Robert; John, Chandy C.; Birbeck, Gretchen L.; Medicine, School of MedicineElectroencephalography at hospital presentation may offer important insights regarding prognosis that can inform understanding of cerebral malaria (CM) pathophysiology and potentially guide patient selection and risk stratification for future clinical trials. Electroencephalogram (EEG) findings in children with CM in Uganda and Malawi were compared and associations between admission EEG findings and outcome across this diverse population were assessed. Demographic, clinical and admission EEG data from Ugandan and Malawian children admitted from 2009 to 2012 with CM were gathered, and survivors assessed for neurological abnormalities at discharge. RESULTS: 281 children were enrolled (Uganda n = 122, Malawi n = 159). The Malawian population was comprised only of retinopathy positive children (versus 72.5% retinopathy positive in Uganda) and were older (4.2 versus 3.7 years; p = 0.046), had a higher HIV prevalence (9.0 versus 2.8%; p = 0.042), and worse hyperlactataemia (7.4 versus 5.2 mmol/L; p < 0.001) on admission compared to the Ugandan children. EEG findings differed between the two groups in terms of average voltage and frequencies, reactivity, asymmetry, and the presence/absence of sleep architecture. In univariate analyses pooling EEG and outcomes data for both sites, higher average and maximum voltages, faster dominant frequencies, and retained reactivity were associated with survival (all p < 0.05). Focal slowing was associated with death (OR 2.93; 95% CI 1.77-7.30) and a lower average voltage was associated with neurological morbidity in survivors (p = 0.0032). CONCLUSIONS: Despite substantial demographic and clinical heterogeneity between subjects in Malawi and Uganda as well as different EEG readers at each site, EEG findings on admission predicted mortality and morbidity. For CM clinical trials aimed at decreasing mortality or morbidity, EEG may be valuable for risk stratification and/or subject selection.Item Autoantibody levels are associated with acute kidney injury, anemia and post-discharge morbidity and mortality in Ugandan children with severe malaria(Nature Research, 2019-10-17) Rivera-Correa, Juan; Conroy, Andrea L.; Opoka, Robert O.; Batte, Anthony; Namazzi, Ruth; Ouma, Benson; Bangirana, Paul; Idro, Richard; Schwaderer, Andrew L.; John, Chandy C.; Rodriguez, Ana; Pediatrics, School of MedicineAutoantibodies targeting host antigens contribute to autoimmune disorders, frequently occur during and after infections and have been proposed to contribute to malaria-induced anemia. We measured anti-phosphatidylserine (PS) and anti-DNA antibody levels in 382 Ugandan children prospectively recruited in a study of severe malaria (SM). High antibody levels were defined as antibody levels greater than the mean plus 3 standard deviations of community children (CC). We observed increases in median levels of anti-PS and anti-DNA antibodies in children with SM compared to CC (p < 0.0001 for both). Children with severe malarial anemia were more likely to have high anti-PS antibodies than children with cerebral malaria (16.4% vs. 7.4%), p = 0.02. Increases in anti-PS and anti-DNA antibodies were associated with decreased hemoglobin (p < 0.05). A one-unit increase in anti-DNA antibodies was associated with a 2.99 (95% CI, 1.68, 5.31) increase odds of acute kidney injury (AKI) (p < 0.0001). Elevated anti-PS and anti-DNA antibodies were associated with post-discharge mortality (p = 0.031 and p = 0.042, respectively). Children with high anti-PS antibodies were more likely to have multiple hospital readmissions compared to children with normal anti-PS antibody levels (p < 0.05). SM is associated with increased autoantibodies against PS and DNA. Autoantibodies were associated with anemia, AKI, post-discharge mortality, and hospital readmission.Item Bromodomains in Protozoan Parasites: Evolution, Function, and Opportunities for Drug Development(American Society for Microbiology, 2017-01-11) Jeffers, Victoria; Yang, Chunlin; Huang, Sherri; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of MedicineParasitic infections remain one of the most pressing global health concerns of our day, affecting billions of people and producing unsustainable economic burdens. The rise of drug-resistant parasites has created an urgent need to study their biology in hopes of uncovering new potential drug targets. It has been established that disrupting gene expression by interfering with lysine acetylation is detrimental to survival of apicomplexan (Toxoplasma gondii and Plasmodium spp.) and kinetoplastid (Leishmania spp. and Trypanosoma spp.) parasites. As "readers" of lysine acetylation, bromodomain proteins have emerged as key gene expression regulators and a promising new class of drug target. Here we review recent studies that demonstrate the essential roles played by bromodomain-containing proteins in parasite viability, invasion, and stage switching and present work showing the efficacy of bromodomain inhibitors as novel antiparasitic agents. In addition, we performed a phylogenetic analysis of bromodomain proteins in representative pathogens, some of which possess unique features that may be specific to parasite processes and useful in future drug development.Item Case Management of Malaria in Pregnancy(Association of Kenya Physicians, 2007) Juma, Elizabeth; Association of Kenya Physicians Scientific Conference (11th : Mar. 2007 : Eldoret, Kenya)Malaria in pregnancy is a big cause of maternal and perinatal morbidity and mortality There are gaps in knowledge concerning, the development of immunity to malaria, P. vivax infections in pregnancy, and effective therapies for both IPTp and case management. Programs for the control of malaria in pregnancy have not yet been widely and successfully implemented.Item Case Report: Birth Outcome and Neurodevelopment in Placental Malaria Discordant Twins(ASTMH, 2019-03) Conroy, Andrea L.; Bangirana, Paul; Muhindo, Mary K.; Kakuru, Abel; Jagannathan, Prasanna; Opoka, Robert O.; Liechty, Edward A.; Nakalembe, Miriam; Kamya, Moses R.; Dorsey, Grant; John, Chandy C.; Pediatrics, School of MedicineMaternal infection during pregnancy can have lasting effects on neurodevelopment, but the impact of malaria in pregnancy on child neurodevelopment is unknown. We present a case of a 24-year-old gravida three woman enrolled at 14 weeks 6 days of gestation in a clinical trial evaluating malaria prevention strategies in pregnancy. She had two blood samples test positive for Plasmodium falciparum using loop-mediated isothermal amplification before 20 weeks of gestation. At 31 weeks 4 days of gestation, the woman presented with preterm premature rupture of membranes, and the twins were delivered by cesarean section. Twin A was 1,920 g and Twin B was 1,320 g. Both placentas tested negative for malaria by microscopy, but the placenta of Twin B had evidence of past malaria by histology. The twins' development was assessed using the Bayley Scales of Infant and Toddler Development-Third Edition. At 1 year chronologic age, Twin B had lower scores across all domains (composite scores: cognitive, Twin A [100], Twin B [70]; motor, Twin A [88], Twin B [73]; language, Twin A [109], Twin B [86]). This effect persisted at 2 years chronologic age (composite scores: cognitive, Twin A [80], Twin B [60]; motor, Twin A [76], Twin B [67]; language, Twin A [77], Twin B [59]). Infant health was similar over the first 2 years of life. We report differences in neurodevelopmental outcomes in placental malaria-discordant dizygotic twins. Additional research is needed to evaluate the impact of placental malaria on neurodevelopmental complications.Item Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes(Springer Nature, 2019-05-22) Mysore, Keshava; Li, Ping; Wang, Chien-Wei; Hapairai, Limb K.; Scheel, Nicholas D.; Realey, Jacob S.; Sun, Longhua; Severson, David W.; Wei, Na; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineBACKGROUND: RNA interference (RNAi), which has facilitated functional characterization of mosquito neural development genes such as the axon guidance regulator semaphorin-1a (sema1a), could one day be applied as a new means of vector control. Saccharomyces cerevisiae (baker's yeast) may represent an effective interfering RNA expression system that could be used directly for delivery of RNA pesticides to mosquito larvae. Here we describe characterization of a yeast larvicide developed through bioengineering of S. cerevisiae to express a short hairpin RNA (shRNA) targeting a conserved site in mosquito sema1a genes. RESULTS: Experiments conducted on Aedes aegypti larvae demonstrated that the yeast larvicide effectively silences sema1a expression, generates severe neural defects, and induces high levels of larval mortality in laboratory, simulated-field, and semi-field experiments. The larvicide was also found to induce high levels of Aedes albopictus, Anopheles gambiae and Culex quinquefasciatus mortality. CONCLUSIONS: The results of these studies indicate that use of yeast interfering RNA larvicides targeting mosquito sema1a genes may represent a new biorational tool for mosquito control.Item Delayed iron improves iron status without altering malaria risk in severe malarial anemia(Oxford University Press, 2020-05) Cusick, Sarah E.; Opoka, Robert O.; Ssemata, Andrew S.; Georgieff, Michael K.; John, Chandy C.; Pediatrics, School of MedicineBackground: WHO guidelines recommend concurrent iron and antimalarial treatment in children with malaria and iron deficiency, but iron may not be well absorbed or utilized during a malaria episode. Objectives: We aimed to determine whether starting iron 28 d after antimalarial treatment in children with severe malaria and iron deficiency would improve iron status and lower malaria risk. Methods: We conducted a randomized clinical trial on the effect of immediate compared with delayed iron treatment in Ugandan children 18 mo-5 y of age with 2 forms of severe malaria: cerebral malaria (CM; n = 79) or severe malarial anemia (SMA; n = 77). Asymptomatic community children (CC; n = 83) were enrolled as a comparison group. Children with iron deficiency, defined as zinc protoporphyrin (ZPP) ≥ 80 µmol/mol heme, were randomly assigned to receive a 3-mo course of daily oral ferrous sulfate (2 mg · kg-1 · d-1) either concurrently with antimalarial treatment (immediate arm) or 28 d after receiving antimalarial treatment (delayed arm). Children were followed for 12 mo. Results: All children with CM or SMA, and 35 (42.2%) CC, were iron-deficient and were randomly assigned to immediate or delayed iron treatment. Immediate compared with delayed iron had no effect in any of the 3 study groups on the primary study outcomes (hemoglobin concentration and prevalence of ZPP ≥ 80 µmol/mol heme at 6 mo, malaria incidence over 12 mo). However, after 12 mo, children with SMA in the delayed compared with the immediate arm had a lower prevalence of iron deficiency defined by ZPP (29.4% compared with 65.6%, P = 0.006), a lower mean concentration of soluble transferrin receptor (6.1 compared with 7.8 mg/L, P = 0.03), and showed a trend toward fewer episodes of severe malaria (incidence rate ratio: 0.39; 95% CI: 0.14, 1.12). Conclusions: In children with SMA, delayed iron treatment did not increase hemoglobin concentration, but did improve long-term iron status over 12 mo without affecting malaria incidence.This trial was registered at clinicaltrials.gov as NCT01093989.