- Browse by Subject
Browsing by Subject "Molecular neuroscience"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Combinatorial analyses reveal cellular composition changes have different impacts on transcriptomic changes of cell type specific genes in Alzheimer’s Disease(Springer Nature, 2021-01-11) Johnson, Travis S.; Xiang, Shunian; Dong, Tianhan; Huang, Zhi; Cheng, Michael; Wang, Tianfu; Yang, Kai; Ni, Dong; Huang, Kun; Zhang, Jie; Biostatistics, School of Public HealthAlzheimer’s disease (AD) brains are characterized by progressive neuron loss and gliosis. Previous studies of gene expression using bulk tissue samples often fail to consider changes in cell-type composition when comparing AD versus control, which can lead to differences in expression levels that are not due to transcriptional regulation. We mined five large transcriptomic AD datasets for conserved gene co-expression module, then analyzed differential expression and differential co-expression within the modules between AD samples and controls. We performed cell-type deconvolution analysis to determine whether the observed differential expression was due to changes in cell-type proportions in the samples or to transcriptional regulation. Our findings were validated using four additional datasets. We discovered that the increased expression of microglia modules in the AD samples can be explained by increased microglia proportions in the AD samples. In contrast, decreased expression and perturbed co-expression within neuron modules in the AD samples was likely due in part to altered regulation of neuronal pathways. Several transcription factors that are differentially expressed in AD might account for such altered gene regulation. Similarly, changes in gene expression and co-expression within astrocyte modules could be attributed to combined effects of astrogliosis and astrocyte gene activation. Gene expression in the astrocyte modules was also strongly correlated with clinicopathological biomarkers. Through this work, we demonstrated that combinatorial analysis can delineate the origins of transcriptomic changes in bulk tissue data and shed light on key genes and pathways involved in AD.Item Identification of HIVEP2 as a dopaminergic transcription factor related to substance use disorders in rats and humans(Springer Nature, 2019-10-04) Zhao, Juan; Chen, Chunnuan; Bell, Richard L.; Qing, Hong; Lin, Zhicheng; Psychiatry, School of MedicinePlaying an important role in the etiology of substance use disorder (SUD), dopamine (DA) neurons are subject to various regulations but transcriptional regulations are largely understudied. For the first time, we report here that the Human Immunodeficiency Virus Type I Enhancer Binding Protein 2 (HIVEP2) is a dopaminergic transcriptional regulator. HIVEP2 is expressed in both the cytoplasm and nuclei of DA neurons. Therein, HIVEP2 can target the intronic sequence GTGGCTTTCT of SLC6A3 and thereby activate the gene. In naive rats from the bi-directional selectively bred substance-preferring P vs -nonpreferring NP rat model of substance abuse vulnerability, increased gene activity in males was associated with the vulnerability, whereas decreased gene activity in the females was associated with the same vulnerability. In clinical subjects, extensive and significant HIVEP2-SLC6A3 interactions were observed for SUD. Collectively, HIVEP2-mediated transcriptional mechanisms are implicated in dopaminergic pathophysiology of SUD.Item Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice(Nature, 2020-06-01) Emmerzaal, Tim L.; Preston, Graeme; Geenen, Bram; Verweij, Vivienne; Wiesmann, Maximilian; Vasileiou, Elisavet; Grüter, Femke; de Groot, Corné; Schoorl, Jeroen; de Veer, Renske; Roelofs, Monica; Arts, Martijn; Hendriksen, Yara; Klimars, Eva; Donti, Taraka R.; Graham, Brett H.; Morava, Eva; Rodenburg, Richard J.; Kozicz, Tamas; Medical and Molecular Genetics, School of MedicineMitochondria play a critical role in bioenergetics, enabling stress adaptation, and therefore, are central in biological stress responses and stress-related complex psychopathologies. To investigate the effect of mitochondrial dysfunction on the stress response and the impact on various biological domains linked to the pathobiology of depression, a novel mouse model was created. These mice harbor a gene trap in the first intron of the Ndufs4 gene (Ndufs4GT/GT mice), encoding the NDUFS4 protein, a structural component of complex I (CI), the first enzyme of the mitochondrial electron transport chain. We performed a comprehensive behavioral screening with a broad range of behavioral, physiological, and endocrine markers, high-resolution ex vivo brain imaging, brain immunohistochemistry, and multi-platform targeted mass spectrometry-based metabolomics. Ndufs4GT/GT mice presented with a 25% reduction of CI activity in the hippocampus, resulting in a relatively mild phenotype of reduced body weight, increased physical activity, decreased neurogenesis and neuroinflammation compared to WT littermates. Brain metabolite profiling revealed characteristic biosignatures discriminating Ndufs4GT/GT from WT mice. Specifically, we observed a reversed TCA cycle flux and rewiring of amino acid metabolism in the prefrontal cortex. Next, exposing mice to chronic variable stress (a model for depression-like behavior), we found that Ndufs4GT/GT mice showed altered stress response and coping strategies with a robust stress-associated reprogramming of amino acid metabolism. Our data suggest that impaired mitochondrial CI function is a candidate driver for altered stress reactivity and stress-induced brain metabolic reprogramming. These changes result in unique phenomic and metabolomic signatures distinguishing groups based on their mitochondrial genotype.Item Magnetic separation of peripheral nerve-resident cells underscores key molecular features of human Schwann cells and fibroblasts: an immunochemical and transcriptomics approach(Nature Publishing Group, 2020-10-28) Peng, Kaiwen; Sant, David; Andersen, Natalia; Silvera, Risset; Camarena, Vladimir; Piñero, Gonzalo; Graham, Regina; Khan, Aisha; Xu, Xiao-Ming; Wang, Gaofeng; Monje, Paula V.; Neurological Surgery, School of MedicineNerve-derived human Schwann cell (SC) cultures are irreplaceable models for basic and translational research but their use can be limited due to the risk of fibroblast overgrowth. Fibroblasts are an ill-defined population consisting of highly proliferative cells that, contrary to human SCs, do not undergo senescence in culture. We initiated this study by performing an exhaustive immunological and functional characterization of adult nerve-derived human SCs and fibroblasts to reveal their properties and optimize a protocol of magnetic-activated cell sorting (MACS) to separate them effectively both as viable and biologically competent cells. We next used immunofluorescence microscopy imaging, flow cytometry analysis and next generation RNA sequencing (RNA-seq) to unambiguously characterize the post-MACS cell products. High resolution transcriptome profiling revealed the identity of key lineage-specific transcripts and the clearly distinct neural crest and mesenchymal origin of human SCs and fibroblasts, respectively. Our analysis underscored a progenitor- or stem cell-like molecular phenotype in SCs and fibroblasts and the heterogeneity of the fibroblast populations. In addition, pathway analysis of RNA-seq data highlighted putative bidirectional networks of fibroblast-to-SC signaling that predict a complementary, yet seemingly independent contribution of SCs and fibroblasts to nerve regeneration. In sum, combining MACS with immunochemical and transcriptomics approaches provides an ideal workflow to exhaustively assess the identity, the stage of differentiation and functional features of highly purified cells from human peripheral nerve tissues.