- Browse by Subject
Browsing by Subject "Plasmodium falciparum"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
Item Clinical Comparison of Retinopathy-Positive and Retinopathy-Negative Cerebral Malaria(American Society of Tropical Medicine and Hygiene, 2017-05) Villaverde, Chandler; Namazzi, Ruth; Shabani, Estela; Opoka, Robert O.; John, Chandy C.; Pediatrics, School of MedicineAbstractCerebral malaria (CM) is a severe and often lethal complication of falciparum malaria. A classic malaria retinopathy is seen in some (retinopathy-positive [RP]) children but not others (retinopathy-negative [RN]), and is associated with increased parasite sequestration. It is unclear whether RN CM is a severe nonmalarial illness with incidental parasitemia or a less severe form of the same malarial illness as RP CM. Understanding the clinical differences between RP and RN CM may help shed light on the pathophysiology of malarial retinopathy. We compared clinical history, physical examination, laboratory findings, and outcomes of RP (N = 167) and RN (N = 87) children admitted to Mulago Hospital, Kampala, Uganda. Compared with RN children, RP children presented with a longer history of illness, as well as physical examination and laboratory findings indicative of more severe disease and organ damage. The hospital course of RP children was complicated by longer coma duration and a greater transfusion burden than RN children. Mortality did not differ significantly between RP and RN children (14.4% versus 8.0%, P = 0.14). Further, severity of retinal hemorrhage correlated with the majority of variables that differed between RP and RN children. The data suggest that RP and RN CM may reflect the spectrum of illness in CM, and that RN CM could be an earlier, less severe form of disease.Item The CYB5R3c.350C>G and G6PD A alleles modify severity of anemia in malaria and sickle cell disease(Wiley, 2020-11) Gordeuk, Victor R.; Shah, Binal N.; Zhang, Xu; Thuma, Philip E.; Zulu, Stenford; Moono, Rodgers; Reading, N. Scott; Song, Jihyun; Zhang, Yingze; Nouraie, Mehdi; Campbell, Andrew; Minniti, Caterina P.; Rana, Sohail R.; Darbari, Deepika S.; Kato, Gregory J.; Niu, Mei; Castro, Oswaldo L.; Machado, Roberto; Gladwin, Mark T.; Prchal, Josef T.; Medicine, School of MedicineGenetic modifiers of anemia in Plasmodium falciparum infection and sickle cell disease (SCD) are not fully known. Both conditions are associated with oxidative stress, hemolysis and anemia. The CYB5R3 gene encodes cytochrome b5 reductase 3, which converts methemoglobin to hemoglobin through oxidation of NADH. CYB5R3c.350C > G encoding CYB5R3T117S , the most frequent recognized African-specific polymorphism, does not have known functional significance, but its high allele frequency (23% in African Americans) suggests a selection advantage. Glucose-6-phosphate dehydrogenase (G6PD) is essential for protection from oxidants; its African-polymorphic X-linked A+ and A- alleles, and other variants with reduced activity, coincide with endemic malaria distribution, suggesting protection from lethal infection. We examined the association of CYB5R3c.350C > G with severe anemia (hemoglobin <5 g/dL) in the context of G6PD A+ and A- status among 165 Zambian children with malaria. CYB5R3c.350C > G offered protection against severe malarial anemia in children without G6PD deficiency (G6PD wild type or A+/A- heterozygotes) (odds ratio 0.29, P = .022) but not in G6PD A+ or A- hemizygotes/homozygotes. We also examined the relationship of CYB5R3c.350C > G with hemoglobin concentration among 267 children and 321 adults and adolescents with SCD in the US and UK and found higher hemoglobin in SCD patients without G6PD deficiency (β = 0.29, P = .022 children; β = 0.33, P = .004 adults). Functional studies in SCD erythrocytes revealed mildly lower activity of native CYB5R3T117S compared to wildtype CYB5R3 and higher NADH/NAD+ ratios. In conclusion, CYB5R3c.350C > G appears to ameliorate anemia severity in malaria and SCD patients without G6PD deficiency, possibly accounting for CYB5R3c.350C > G selection and its high prevalence.Item Dynamic modulation of spleen germinal center reactions by gut bacteria during Plasmodium infection(Cell Press, 2021-05-11) Mandal, Rabindra K.; Denny, Joshua E.; Namazzi, Ruth; Opoka, Robert O.; Datta, Dibyadyuti; John, Chandy C.; Schmidt, Nathan W.; Pediatrics, School of MedicineGut microbiota educate the local and distal immune system in early life to imprint long-term immunological outcomes while maintaining the capacity to dynamically modulate the local mucosal immune system throughout life. It is unknown whether gut microbiota provide signals that dynamically regulate distal immune responses following an extra-gastrointestinal infection. We show here that gut bacteria composition correlated with the severity of malaria in children. Using the murine model of malaria, we demonstrate that parasite burden and spleen germinal center reactions are malleable to dynamic cues provided by gut bacteria. Whereas antibiotic-induced changes in gut bacteria have been associated with immunopathology or impairment of immunity, the data demonstrate that antibiotic-induced changes in gut bacteria can enhance immunity to Plasmodium. This effect is not universal but depends on baseline gut bacteria composition. These data demonstrate the dynamic communications that exist among gut bacteria, the gut-distal immune system, and control of Plasmodium infection.Item Extent and Dynamics of Polymorphism in the Malaria Vaccine Candidate Plasmodium falciparum Reticulocyte-Binding Protein Homologue-5 in Kalifabougou, Mali(The American Society of Tropical Medicine and Hygiene, 2018-07) Ouattara, Amed; Tran, Tuan M.; Doumbo, Safiatou; Matthew, Adams; Agrawal, Sonia; Niangaly, Amadou; Nelson-Owens, Sara; Doumtabé, Didier; Tolo, Youssouf; Ongoiba, Aissata; Takala-Harrison, Shannon; Traoré, Boubacar; Silva, Joana C.; Crompton, Peter D.; Doumbo, Ogobara K.; Plowe, Christopher V.; Medicine, School of MedicineReticulocyte-binding homologues (RH) are a ligand family that mediates merozoite invasion of erythrocytes in Plasmodium falciparum. Among the five members of this family identified so far, only P. falciparum reticulocyte-binding homologue-5 (PfRH5) has been found to be essential for parasite survival across strains that differ in virulence and route of host-cell invasion. Based on its essential role in invasion and early evidence of sequence conservation, PfRH5 has been prioritized for development as a vaccine candidate. However, little is known about the extent of genetic variability of RH5 in the field and the potential impact of such diversity on clinical outcomes or on vaccine evasion. Samples collected during a prospective cohort study of malaria incidence conducted in Kalifabougou, in southwestern Mali, were used to estimate genetic diversity, measure haplotype prevalence, and assess the within-host dynamics of PfRH5 variants over time and in relation to clinical malaria. A total of 10 nonsynonymous polymorphic sites were identified in the Pfrh5 gene, resulting in 13 haplotypes encoding unique protein variants. Four of these variants have not been previously observed. Plasmodium falciparum reticulocyte-binding homologue-5 had low amino acid haplotype (h = 0.58) and nucleotide (π = 0.00061) diversity. By contrast to other leading blood-stage malaria vaccine candidate antigens, amino acid differences were not associated with changes in the risk of febrile malaria in consecutive infections. Conserved B- and T-cell epitopes were identified. These results support the prioritization of PfRH5 for possible inclusion in a broadly cross-protective vaccine.Item Guanabenz repurposed as an antiparasitic with activity against acute and latent toxoplasmosis(American Society for Microbiology, 2015-11) Benmerzouga, Imaan; Checkley, Lisa A.; Ferdig, Michael T.; Arrizabalaga, Gustavo; Wek, Ronald C.; Sullivan, William J. Jr.; Department of Pharmacology and Toxicology, IU School of MedicineToxoplasma gondii is a protozoan parasite that persists as a chronic infection. Toxoplasma evades immunity by forming tissue cysts, which reactivate to cause life-threatening disease during immune suppression. There is an urgent need to identify drugs capable of targeting these latent tissue cysts, which tend to form in the brain. We previously showed that translational control is critical during infections with both replicative and latent forms of Toxoplasma. Here we report that guanabenz, an FDA-approved drug that interferes with translational control, has antiparasitic activity against replicative stages of Toxoplasma and the related apicomplexan parasite Plasmodium falciparum (a malaria agent). We also found that inhibition of translational control interfered with tissue cyst biology in vitro. Toxoplasma bradyzoites present in these abnormal cysts were diminished and misconfigured, surrounded by empty space not seen in normal cysts. These findings prompted analysis of the efficacy of guanabenz in vivo by using established mouse models of acute and chronic toxoplasmosis. In addition to protecting mice from lethal doses of Toxoplasma, guanabenz has a remarkable ability to reduce the number of brain cysts in chronically infected mice. Our findings suggest that guanabenz can be repurposed into an effective antiparasitic with a unique ability to reduce tissue cysts in the brain.Item HIV infection drives IgM and IgG3 subclass bias in Plasmodium falciparum-specific and total immunoglobulin concentration in Western Kenya(BioMed Central, 2019-08-30) Odhiambo, Eliud O.; Datta, Dibyadyuti; Guyah, Bernard; Ayodo, George; Ondigo, Bartholomew N.; Abong’o, Benard O.; John, Chandy C.; Frosch, Anne E. P.; Pediatrics, School of MedicineBACKGROUND: HIV infection is associated with more frequent and severe episodes of malaria and may be the result of altered malaria-specific B cell responses. However, it is poorly understood how HIV and the associated lymphopenia and immune activation affect malaria-specific antibody responses. METHODS: HIV infected and uninfected adults were recruited from Bondo subcounty hospital in Western Kenya at the time of HIV testing (antiretroviral and co-trimoxazole prophylaxis naïve). Total and Plasmodium falciparum apical membrane antigen-1 (AMA1) and glutamate rich protein-R0 (GLURP-R0) specific IgM, IgG and IgG subclass concentrations was measured in 129 and 52 of recruited HIV-infected and uninfected individuals, respectively. In addition, HIV-1 viral load (VL), CD4+ T cell count, and C-reactive protein (CRP) concentration was quantified in study participants. Antibody levels were compared based on HIV status and the associations of antibody concentration with HIV-1 VL, CD4+ count, and CRP levels was measured using Spearman correlation testing. RESULTS: Among study participants, concentrations of IgM, IgG1 and IgG3 antibodies to AMA1 and GLURP-R0 were higher in HIV infected individuals compared to uninfected individuals (all p < 0.001). The IgG3 to IgG1 ratio to both AMA1 and GLURP-R0 was also significantly higher in HIV-infected individuals (p = 0.02). In HIV-infected participants, HIV-1 VL and CRP were weakly correlated with AMA1 and GLURP-R0 specific IgM and IgG1 concentrations and total (not antigen specific) IgM, IgG, IgG1, and IgG3 concentrations (all p < 0.05), suggesting that these changes are related in part to viral load and inflammation. CONCLUSIONS: Overall, HIV infection leads to a total and malaria antigen-specific immunoglobulin production bias towards higher levels of IgM, IgG1, and IgG3, and HIV-1 viraemia and systemic inflammation are weakly correlated with these changes. Further assessments of antibody affinity and function and correlation with risk of clinical malaria, will help to better define the effects of HIV infection on clinical and biological immunity to malaria.Item The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria: A systematic review and a pooled multicentre individual-patient meta-analysis(Public Library of Science, 2020-10-19) Mousa, Andria; Al-Taiar, Abdullah; Anstey, Nicholas M.; Badaut, Cyril; Barber, Bridget E.; Bassat, Quique; Challenger, Joseph D.; Cunnington, Aubrey J.; Datta, Dibyadyuti; Drakeley, Chris; Ghani, Azra C.; Gordeuk, Victor R.; Grigg, Matthew J.; Hugo, Pierre; John, Chandy C.; Mayor, Alfredo; Migot-Nabias, Florence; Opoka, Robert O.; Pasvol, Geoffrey; Rees, Claire; Reyburn, Hugh; Riley, Eleanor M.; Shah, Binal N.; Sitoe, Antonio; Sutherland, Colin J.; Thuma, Philip E.; Unger, Stefan A.; Viwami, Firmine; Walther, Michael; Whitty, Christopher J. M.; William, Timothy; Okell, Lucy C.; Pediatrics, School of MedicineBackground Delay in receiving treatment for uncomplicated malaria (UM) is often reported to increase the risk of developing severe malaria (SM), but access to treatment remains low in most high-burden areas. Understanding the contribution of treatment delay on progression to severe disease is critical to determine how quickly patients need to receive treatment and to quantify the impact of widely implemented treatment interventions, such as ‘test-and-treat’ policies administered by community health workers (CHWs). We conducted a pooled individual-participant meta-analysis to estimate the association between treatment delay and presenting with SM. Methods and findings A search using Ovid MEDLINE and Embase was initially conducted to identify studies on severe Plasmodium falciparum malaria that included information on treatment delay, such as fever duration (inception to 22nd September 2017). Studies identified included 5 case–control and 8 other observational clinical studies of SM and UM cases. Risk of bias was assessed using the Newcastle–Ottawa scale, and all studies were ranked as ‘Good’, scoring ≥7/10. Individual-patient data (IPD) were pooled from 13 studies of 3,989 (94.1% aged <15 years) SM patients and 5,780 (79.6% aged <15 years) UM cases in Benin, Malaysia, Mozambique, Tanzania, The Gambia, Uganda, Yemen, and Zambia. Definitions of SM were standardised across studies to compare treatment delay in patients with UM and different SM phenotypes using age-adjusted mixed-effects regression. The odds of any SM phenotype were significantly higher in children with longer delays between initial symptoms and arrival at the health facility (odds ratio [OR] = 1.33, 95% CI: 1.07–1.64 for a delay of >24 hours versus ≤24 hours; p = 0.009). Reported illness duration was a strong predictor of presenting with severe malarial anaemia (SMA) in children, with an OR of 2.79 (95% CI:1.92–4.06; p < 0.001) for a delay of 2–3 days and 5.46 (95% CI: 3.49–8.53; p < 0.001) for a delay of >7 days, compared with receiving treatment within 24 hours from symptom onset. We estimate that 42.8% of childhood SMA cases and 48.5% of adult SMA cases in the study areas would have been averted if all individuals were able to access treatment within the first day of symptom onset, if the association is fully causal. In studies specifically recording onset of nonsevere symptoms, long treatment delay was moderately associated with other SM phenotypes (OR [95% CI] >3 to ≤4 days versus ≤24 hours: cerebral malaria [CM] = 2.42 [1.24–4.72], p = 0.01; respiratory distress syndrome [RDS] = 4.09 [1.70–9.82], p = 0.002). In addition to unmeasured confounding, which is commonly present in observational studies, a key limitation is that many severe cases and deaths occur outside healthcare facilities in endemic countries, where the effect of delayed or no treatment is difficult to quantify. Conclusions Our results quantify the relationship between rapid access to treatment and reduced risk of severe disease, which was particularly strong for SMA. There was some evidence to suggest that progression to other severe phenotypes may also be prevented by prompt treatment, though the association was not as strong, which may be explained by potential selection bias, sample size issues, or a difference in underlying pathology. These findings may help assess the impact of interventions that improve access to treatment.Item Malaria parasitemia among blood donors in Uganda(Wiley, 2020-05) Murphy, Kristin J.; Conroy, Andrea L.; Ddungu, Henry; Shrestha, Ruchee; Kyeyune-Byabazaire, Dorothy; Petersen, Molly R.; Musisi, Ezra; Patel, Eshan U.; Kasirye, Ronnie; Bloch, Evan M.; Lubega, Irene; John, Chandy C.; Hume, Heather A.; Tobian, Aaron A.R.; Pediatrics, School of MedicineBackground: Malaria remains a leading transfusion associated infectious risk in endemic areas. However, the prevalence of malaria parasitemia has not been well characterized in blood donor populations. This study sought to determine the prevalence of Plasmodium in red blood cell (RBC) and whole blood (WB) units after the rainy season in Uganda. Methods and materials: Between May and July 2018, blood was collected from the sample diversion pouch of 1000 WB donors in Kampala and Jinja, Uganda. The RBC pellet from ethylenediamine tetraacetic acid (EDTA) anticoagulated blood was stored at -80°C until testing. DNA was extracted and nested PCR was used to screen samples at the genus level for Plasmodium, with positive samples further tested for species identification. Results: Malaria parasitemia among asymptomatic, eligible blood donors in two regions of Uganda was 15.4%; 87.7% (135/154) of infections were with P. falciparum, while P. malariae and P. ovale were also detected. There were 4.3% of blood donors who had mixed infection with multiple species. Older donors (>30 years vs. 17-19 years; aPR = 0.31 [95% CI = 0.17-0.58]), females (aPR = 0.60 [95% CI = 0.42-0.87]), repeat donors (aPR = 0.44 [95% CI = 0.27-0.72]) and those donating near the capital city of Kampala versus rural Jinja region (aPR = 0.49 [95% CI = 0.34-0.69]) had a lower prevalence of malaria parasitemia. Conclusions: A high proportion of asymptomatic blood donors residing in a malaria endemic region demonstrate evidence of parasitemia at time of donation. Further research is needed to quantify the risk and associated burden of transfusion-transmitted malaria (TTM) in order to inform strategies to prevent TTM.Item A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria(Springer Nature, 2015-04-30) Mbengue, Alassane; Bhattacharjee, Souvik; Pandharkar, Trupti; Liu, Liu; Estiu, Guillermina; Stahelin, Robert V.; Rizk, Shahir; Njimoh, Dieudonne L.; Ryan, Yana; Chotivanich, Kesinee; Nguon, Chea; Ghorbal, Mehdi; Lopez-Rubio, Jose-Juan; Pfrender, Michael; Emrich, Scott; Mohandas, Narla; Dondorp, Arjen M.; Wiest, Olaf; Haldar, Kasturi; Department of Chemistry & Chemical Biology, School of ScienceArtemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.Item Monoclonal Antibodies against Plasmodium falciparum Circumsporozoite Protein(MDPI, 2017-08-23) Zhang, Min; Mandraju, Rajakumar; Rai, Urvashi; Shiratsuchi, Takayuki; Tsuji, Moriya; Pharmacology and Toxicology, School of MedicineMalaria is a mosquito-borne infectious disease caused by the parasite Plasmodium spp. Malaria continues to have a devastating impact on human health. Sporozoites are the infective forms of the parasite inside mosquito salivary glands. Circumsporozoite protein (CSP) is a major and immunodominant protective antigen on the surface of Plasmodium sporozoites. Here, we report a generation of specific monoclonal antibodies that recognize the central repeat and C-terminal regions of P. falciparum CSP. The monoclonal antibodies 3C1, 3C2, and 3D3-specific for the central repeat region-have higher titers and protective efficacies against challenge with sporozoites compared with 2A10, a gold standard monoclonal antibody that was generated in early 1980s.