- Browse by Subject
Browsing by Subject "SERCA"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Coronary artery disease in metabolic syndrome: a role for the sarcoplasmic reticulum Ca2+ ATPase(2016-05-10) Rodenbeck, Stacey Dineen; Sturek, Michael S.; Day, Richard N.; Evans-Molina, Carmella; Mather, Kieren; Tune, Johnathan D.Coronary artery disease (CAD) is a leading cause of death among Americans and is fueled by underlying metabolic syndrome (MetS). The prevalence and lethality of CAD necessitates rigorous investigations into its underlying mechanisms and to facilitate the development of effective treatment options. Coronary smooth muscle (CSM) phenotypic modulation from quiescent to synthetic, proliferative, and osteogenic phenotypes is a key area of investigation, with underlying mechanisms that remain poorly understood. Using a well-established pre-clinical model of CAD and MetS, the Ossabaw miniature swine, we established for the first time the time course of Ca2+ dysregulation during MetS-induced CAD progression. In particular, we used the fluorescent Ca2+ dye, fura-2, to examine alterations in CSM intracellular Ca2+ regulation during CAD progression, as perturbations in intracellular Ca2+ regulation are implicated in several cellular processes associated with CAD pathology, including CSM contractile responses and proliferative pathways. These studies revealed that the function of several CSM Ca2+ handling proteins is elevated in early CAD, followed by loss of function in severe atherosclerotic plaques. Decreased intracellular Ca2+ regulation occurred concurrently with reductions in CSM proliferation, measured with Ki-67 staining. In particular, alterations in sarcoplasmic reticulum (SR) Ca2+ store together with altered function of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) were associated with induction of proliferation. Organ culture of coronary arterial segments revealed that culture-induced medial thickening was prevented by SERCA inhibition with cyclopiazonic acid (CPA). Activation of SERCA with the small molecule activator, CDN1163, increased CSM proliferation, which was attenuated by treatment with CPA, thus establishing upregulated SERCA function as a proximal inducer of CSM proliferation. Further, we demonstrated that in vitro treatment of CSM from lean Ossabaw swine with the glucagon-like peptide-1 (GLP-1) receptor agonist, exenatide, increased SERCA function. However, in vivo treatment of Ossabaw swine with MetS with the GLP-1 receptor agonist, AC3174, had no effect on CAD progression and in vitro examination revealed resistance of SERCA to GLP-1 receptor agonism in MetS. These findings further implicate SERCA in CAD progression. Collectively, these are the first data directly linking SERCA dysfunction to CSM proliferation and CAD progression, providing a key mechanistic step in CAD progression.Item Investigating the molecular mechanism of phospholamban regulation of the Ca²-pump of cardiac sarcoplasmic reticulum(2011-03-16) Akin, Brandy Lee; Jones, Larry R.; Field, Loren J.; Hudmon, Andrew; Hurley, Thomas D., 1961-; Roach, Peter J.The Ca2+ pump or Ca2+-ATPase of cardiac sarcoplasmic reticulum, SERCA2a, is regulated by phospholamban (PLB), a small inhibitory phosphoprotein that decreases the apparent Ca2+ affinity of the enzyme. We propose that PLB decreases Ca2+ affinity by stabilizing the Ca2+-free, E2·ATP state of the enzyme, thus blocking the transition to E1, the high Ca2+ affinity state required for Ca2+ binding and ATP hydrolysis. The purpose of this dissertation research is to critically evaluate this idea using series of cross-linkable PLB mutants of increasing inhibitory strength (N30C-PLB < PLB3 < PLB4). Three hypotheses were tested; each specifically designed to address a fundamental point in the mechanism of PLB action. Hypothesis 1: SERCA2a with PLB bound is catalytically inactive. The catalytic activity of SERCA2a irreversibly cross-linked to PLB (PLB/SER) was assessed. Ca2+-ATPase activity, and formation of the phosphorylated intermediates were all completely inhibited. Thus, PLB/SER is entirely catalytically inactive. Hypothesis 2: PLB decreases the Ca2+ affinity of SERCA2a by competing with Ca2+ for binding to SERCA2a. The functional effects of N30C-PLB, PLB3, and PLB4 on Ca2+-ATPase activity and phosphoenzyme formation were measured, and correlated with their binding interactions with SERCA2a measured by chemical cross-linking. Successively higher Ca2+ concentrations were required to both activate the enzyme co-expressed with N30C-PLB, PLB3, and PLB4 and to dissociate N30C-PLB, PLB3, and PLB4 from SERCA2a, suggesting competition between PLB and Ca2+ for binding to SERCA2a. This was confirmed with the Ca2+ pump mutant, D351A, which is catalytically inactive but retains strong Ca2+ binding. Increasingly higher Ca2+ concentrations were also required to dissociate N30C-PLB, PLB3, and PLB4 from D351A, demonstrating directly that PLB competes with Ca2+ for binding to the Ca2+ pump. Hypothesis 3: PLB binds exclusively to the Ca2+-free E2 state with bound nucleotide (E2·ATP). Thapsigargin, vanadate, and nucleotide effects on PLB cross-linking to SERCA2a were determined. All three PLB mutants bound preferentially to E2 state with bound nucleotide (E2·ATP), and not at all to the thapsigargin or vanadate bound states. We conclude that PLB inhibits SERCA2a activity by stabilizing a unique E2·ATP conformation that cannot bind Ca2+.