- Browse by Subject
Browsing by Subject "Severe malaria"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Chitinase-3-like 1 is a biomarker of acute kidney injury and mortality in paediatric severe malaria(BioMed Central, 2018-02-15) Conroy, Andrea L.; Hawkes, Michael T.; Elphinstone, Robyn; Opoka, Robert O.; Namasopo, Sophie; Miller, Christopher; John, Chandy C.; Kain, Kevin C.; Pediatrics, School of MedicineBACKGROUND: Chitinase-3-like 1 (CHI3L1) is a glycoprotein elevated in paediatric severe malaria, and an emerging urinary biomarker of acute kidney injury (AKI). Based on the hypothesis that elevated CHI3L1 levels in malaria are associated with disease severity, the relationship between plasma CHI3L1 levels, AKI and mortality was investigated in Ugandan children enrolled in a clinical trial evaluating inhaled nitric oxide (iNO) as an adjunctive therapy for severe malaria. METHODS: Plasma CHI3L1 levels were measured daily for 4 days in children admitted to hospital with severe malaria and at day 14 follow up. AKI was defined using the Kidney Disease: Improving Global Outcomes consensus criteria. This is a secondary analysis of a randomized double-blind placebo-controlled trial of iNO versus placebo as an adjunctive therapy for severe malaria. Inclusion criteria were: age 1-10 years, and selected criteria for severe malaria. Exclusion criteria included suspected bacterial meningitis, known chronic illness including renal disease, haemoglobinopathy, or severe malnutrition. iNO was administered by non-rebreather mask for up to 72 h at 80 ppm. RESULTS: CHI3L1 was elevated in patients with AKI and remained higher over hospitalization (p < 0.0001). Admission CHI3L1 levels were elevated in children who died. By multivariable analysis logCHI3L1 levels were associated with increased risk of in-hospital death (relative risk, 95% CI 4.10, 1.32-12.75, p = 0.015) and all-cause 6 month mortality (3.21, 1.47-6.98, p = 0.003) following correction for iNO and AKI. Treatment with iNO was associated with delayed CHI3L1 recovery with a daily decline of 34% in the placebo group versus 29% in the iNO group (p = 0.012). CHI3L1 levels correlated with markers of inflammation (CRP, sTREM-1, CXCL10), endothelial activation (Ang-2, sICAM-1) and intravascular haemolysis (LDH, haem, haemopexin). CONCLUSIONS: CHI3L1 is a novel biomarker of malaria-associated AKI and an independent risk factor for mortality that is associated with well-established pathways of severe malaria pathogenesis including inflammation, endothelial activation, and haemolysis.Item Dynamic modulation of spleen germinal center reactions by gut bacteria during Plasmodium infection(Cell Press, 2021-05-11) Mandal, Rabindra K.; Denny, Joshua E.; Namazzi, Ruth; Opoka, Robert O.; Datta, Dibyadyuti; John, Chandy C.; Schmidt, Nathan W.; Pediatrics, School of MedicineGut microbiota educate the local and distal immune system in early life to imprint long-term immunological outcomes while maintaining the capacity to dynamically modulate the local mucosal immune system throughout life. It is unknown whether gut microbiota provide signals that dynamically regulate distal immune responses following an extra-gastrointestinal infection. We show here that gut bacteria composition correlated with the severity of malaria in children. Using the murine model of malaria, we demonstrate that parasite burden and spleen germinal center reactions are malleable to dynamic cues provided by gut bacteria. Whereas antibiotic-induced changes in gut bacteria have been associated with immunopathology or impairment of immunity, the data demonstrate that antibiotic-induced changes in gut bacteria can enhance immunity to Plasmodium. This effect is not universal but depends on baseline gut bacteria composition. These data demonstrate the dynamic communications that exist among gut bacteria, the gut-distal immune system, and control of Plasmodium infection.Item Inhaled nitric oxide and cognition in pediatric severe malaria: A randomized double-blind placebo controlled trial(Public Library of Science, 2018-01-25) Bangirana, Paul; Conroy, Andrea L.; Opoka, Robert O.; Hawkes, Michael T.; Hermann, Laura; Miller, Christopher; Namasopo, Sophie; Liles, W. Conrad; John, Chandy C.; Kain, Kevin C.; Pediatrics, School of MedicineBACKGROUND: Severe malaria is a leading cause of acquired neurodisability in Africa and is associated with reduced nitric oxide (NO) bioavailability. A neuroprotective role for inhaled NO has been reported in animal studies, and administration of inhaled NO in preterm neonates with respiratory distress syndrome is associated with a 47% reduced risk of cognitive impairment at two years of age. METHODS: A randomized double-blind placebo-controlled trial of inhaled NO versus placebo as an adjunctive therapy for severe malaria was conducted in Uganda between 2011 and 2013. Children received study gas for a maximum 72 hours (inhaled NO, 80 parts per million; room air placebo). Neurocognitive testing was performed on children<5 years at 6 month follow-up. The neurocognitive outcomes assessed were overall cognition (a composite of fine motor, visual reception, receptive language, and expressive language), attention, associative memory, and the global executive composite. Main outcomes were attention, associative memory, and overall cognitive ability. RESULTS: Sixty-one children receiving iNO and 59 children receiving placebo were evaluated. Forty-two children (35.0%) were impaired in at least one neurocognitive domain. By intention-to-treat analysis, there were no differences in unadjusted or unadjusted age-adjusted z-scores for overall cognition (β (95% CI): 0.26 (-0.19, 0.72), p = 0.260), attention (0.18 (-0.14, 0.51), p = 0.267), or memory (0.14 (-0.02, 0.30), p = 0.094) between groups by linear regression. Children receiving inhaled NO had a 64% reduced relative risk of fine motor impairment than children receiving placebo (relative risk, 95% CI: 0.36, 0.14-0.96) by log binomial regression following adjustment for anticonvulsant use. CONCLUSIONS: Severe malaria is associated with high rates of neurocognitive impairment. Treatment with inhaled NO was associated with reduced risk of fine motor impairment. These results need to be prospectively validated in a larger study powered to assess cognitive outcomes in order to evaluate whether strategies to increase bioavailable NO are neuroprotective in children with severe malaria.Item Inhaled nitric oxide as adjunctive therapy for severe malaria: a randomized controlled trial(BioMed Central, 2015-10-29) Hawkes, Michael T.; Conroy, Andrea L.; Opoka, Robert O.; Hermann, Laura; Thorpe, Kevin E.; McDonald, Chloe; Kim, Hani; Higgins, Sarah; Namasopo, Sophie; John, Chandy; Miller, Chris; Liles, W. Conrad; Kain, Kevin C.; Department of Pediatrics, School of MedicineBackground Severe malaria remains a major cause of childhood mortality globally. Decreased endothelial nitric oxide is associated with severe and fatal malaria. The hypothesis was that adjunctive inhaled nitric oxide (iNO) would improve outcomes in African children with severe malaria. Methods A randomized, blinded, placebo-controlled trial of iNO at 80 ppm by non-rebreather mask versus room air placebo as adjunctive treatment to artesunate in children with severe malaria was conducted. The primary outcome was the longitudinal course of angiopoietin-2 (Ang-2), an endothelial biomarker of malaria severity and clinical outcome. Results One hundred and eighty children were enrolled; 88 were assigned to iNO and 92 to placebo (all received IV artesunate). Ang-2 levels measured over the first 72 h of hospitalization were not significantly different between groups. The mortality at 48 h was similar between groups [6/87 (6.9 %) in the iNO group vs 8/92 (8.7 %) in the placebo group; OR 0.78, 95 % CI 0.26–2.3; p = 0.65]. Clinical recovery times and parasite clearance kinetics were similar (p > 0.05). Methaemoglobinaemia >7 % occurred in 25 % of patients receiving iNO and resolved without sequelae. The incidence of neurologic deficits (<14 days), acute kidney injury, hypoglycaemia, anaemia, and haemoglobinuria was similar between groups (p > 0.05). Conclusions iNO at 80 ppm administered by non-rebreather mask was safe but did not affect circulating levels of Ang-2. Alternative methods of enhancing endothelial NO bioavailability may be necessary to achieve a biological effect and improve clinical outcome.Item Investigating the presence of Pfkelch gene mutations in Ugandan children with severe malaria(2017) Gopinadhan, Adnan; Chandy, John; Alexander, Dent; Tuan, TranArtemisinin resistance was first observed in Southeast Asia (SEA) and could pose a threat to malaria treatment all over the world. Recently mutations in the propeller region of Pfkelch13 gene have been used as a genetic marker for resistance observed in SEA. We investigated the presence of mutations in the Pfkelch gene in children in Kampala, Uganda with severe malaria (SM) treated with intravenous quinine, or with asymptomatic P.falciparum infection (AP) treated with artemether-lumefantrine. We sequenced the Pfkelch gene (2178bp) in 157 children with SM and 49 children with AP infection. In children with SM and AP we identified 106 (60.8%) and 27 (55.1%) parasites with mutations upstream of the Pfkelch13 propeller region. The two most prevalent mutations were 142NN (26.1% in SM, 33% in AP) and K189T (16.5% in SM, 12.2% in AP). In SM, only a single infection had a mutation in the propeller region (A578S), while in AP, mutations in the propeller region included A578S (n=1) and S522C (n=1). In children with SM, parasites with 142NN insertion compared to 3D7 Pfkelch13 parasites had lower parasite density (p=0.02) and lower parasite biomass (p=0.03). Children with SM who either had 142NN or K189T mutation cleared parasites after quinine treatment faster than those with the 3D7 Pfkelch13 genotype (P<0.001 for both mutations compared to 3D7). In this cohort mutations, upstream of the Pfkelch13 propeller region were common. Future studies will assess the presence of Pfcrt and Pfmdr mutations in this cohort, and how these relate to the Pfkelch13 mutations and to parasite clearance.Item Methods to estimate baseline creatinine and define acute kidney injury in lean Ugandan children with severe malaria: a prospective cohort study(BMC, 2020-09-29) Batte, Anthony; Starr, Michelle C.; Schwaderer, Andrew L.; Opoka, Robert O.; Namazzi, Ruth; Phelps Nishiguchi, Erika S.; Ssenkusu, John M.; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineBackground Acute kidney injury (AKI) is increasingly recognized as a consequential clinical complication in children with severe malaria. However, approaches to estimate baseline creatinine (bSCr) are not standardized in this unique patient population. Prior to wide-spread utilization, bSCr estimation methods need to be evaluated in many populations, particularly in children from low-income countries. Methods We evaluated six methods to estimate bSCr in Ugandan children aged 6 months to 12 years of age in two cohorts of children with severe malaria (n = 1078) and healthy community children (n = 289). Using isotope dilution mass spectrometry (IDMS)-traceable creatinine measures from community children, we evaluated the bias, accuracy and precision of estimating bSCr using height-dependent and height-independent estimated glomerular filtration (eGFR) equations to back-calculate bSCr or estimating bSCr directly using published or population-specific norms. Results We compared methods to estimate bSCr in healthy community children against the IDMS-traceable SCr measure. The Pottel-age based equation, assuming a normal GFR of 120 mL/min per 1.73m2, was the more accurate method with minimal bias when compared to the Schwartz height-based equation. Using the different bSCr estimates, we demonstrated the prevalence of KDIGO-defined AKI in children with severe malaria ranged from 15.6–43.4%. The lowest estimate was derived using population upper levels of normal and the highest estimate was derived using the mean GFR of the community children (137 mL/min per 1.73m2) to back-calculate the bSCr. Irrespective of approach, AKI was strongly associated with mortality with a step-wise increase in mortality across AKI stages (p < 0.0001 for all). AKI defined using the Pottel-age based equation to estimate bSCr showed the strongest relationship with mortality with a risk ratio of 5.13 (95% CI 3.03–8.68) adjusting for child age and sex. Conclusions We recommend using height-independent age-based approaches to estimate bSCr in hospitalized children in sub-Saharan Africa due to challenges in accurate height measurements and undernutrition which may impact bSCr estimates. In this population the Pottel-age based GFR estimating equation obtained comparable bSCr estimates to population-based estimates in healthy children.Item Plasma angiopoietin-2 is associated with age-related deficits in cognitive sub-scales in Ugandan children following severe malaria(BMC, 2021-01-06) Ouma, Benson J.; Bangirana, Paul; Ssenkusu, John M.; Datta, Dibyadyuti; Opoka, Robert O.; Idro, Richard; Kain, Kevin C.; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineBackground: Elevated angiopoietin-2 (Angpt-2) concentrations are associated with worse overall neurocognitive function in severe malaria survivors, but the specific domains affected have not been elucidated. Methods: Ugandan children with severe malaria underwent neurocognitive evaluation a week after hospital discharge and at 6, 12 and 24 months follow-up. The relationship between Angpt-2 concentrations and age-adjusted, cognitive sub-scale z-scores over time were evaluated using linear mixed effects models, adjusting for disease severity (coma, acute kidney injury, number of seizures in hospital) and sociodemographic factors (age, gender, height-for-age z-score, socio-economic status, enrichment in the home environment, parental education, and any preschool education of the child). The Mullen Scales of Early Learning was used in children < 5 years and the Kaufman Assessment Battery for Children 2nd edition was used in children ≥ 5 years of age. Angpt-2 levels were measured on admission plasma samples by enzyme-linked immunosorbent assay. Adjustment for multiple comparisons was conducted using the Benjamini-Hochberg Procedure of False Discovery Rate. Results: Increased admission Angpt-2 concentration was associated with worse outcomes in all domains (fine and gross motor, visual reception, receptive and expressive language) in children < 5 years of age at the time of severe malaria episode, and worse simultaneous processing and learning in children < 5 years of age at the time of severe malaria who were tested when ≥ 5 years of age. No association was seen between Angpt-2 levels and cognitive outcomes in children ≥ 5 years at the time of severe malaria episode, but numbers of children and testing time points were lower for children ≥ 5 years at the time of severe malaria episode. Conclusion: Elevated Angpt-2 concentration in children with severe malaria is associated with worse outcomes in multiple neurocognitive domains. The relationship between Angpt-2 and worse cognition is evident in children < 5 years of age at the time of severe malaria presentation and in selected domains in older years.Item What causes severe malaria and its complications in children? Lessons learned over the past 15 years(BMC, 2019-03-07) Conroy, Andrea L.; Datta, Dibyadyuti; John, Chandy C.; Pediatrics, School of MedicineOver the past 15 years, malaria mortality has reduced by approximately 50%. However, malaria still causes more than 400,000 deaths annually, most of which occur in African children under 5 years of age. Significant advances in understanding the pathogenesis of the disease provide a basis for future work to prevent severe malaria and its complications. Herein, we provide an overview of advances in our understanding of severe malaria in African children over the past 15 years, highlighting key complications and identifying priorities to further reduce malaria-associated mortality.