- Browse by Subject
Browsing by Subject "Single Nucleotide Polymorphism"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item An Exploration of Irish Surname History through Patrilineal Genetics(2018-12) Farmer, Stephanie Kay; Walsh, Susan; Marrs, Kathleen; Balakrishnan, LataItem Functional characterization of a genetic polymorphism in the promoter of the ESR2 gene(Springer, 2012-04) Philips, Santosh; Richter, Alexandra; Oesterreich, Steffi; Rae, James M.; Flockhart, David A.; Perumal, Narayanan B.; Skaar, Todd C.The ESR2 gene encodes the estrogen receptor beta protein. Several studies have shown that genetic variants in the ESR2 gene are associated with a variety of clinical phenotypes. However, very little is known about the functional significance of ESR2 genetic variants. We used a bioinformatics approach to identify regions of the ESR2 promoter that is evolutionarily conserved across the genomes of several species. We resequenced 1.6 kb of the ESR2 gene which included 0.8 kb of the promoter, 0.3 kb of exon ON, and 0.5 kb of the following intron. We identified five single-nucleotide polymorphisms (SNPs) in the ESR2 promoter and one SNP in the intron. Phase analysis indicated that the SNPs likely exist in 11 different haplotypes. Three of the SNPs (rs8008187, rs3829768, rs35036378) were predicted to alter transcription factor binding sites in the ESR2 promoter. All three were detected only in African American subjects. The rs35036378 SNP was in the TATA box and was highly conserved across species. ESR2 promoter reporter assays in LNCaP and SKBR3 cell lines showed that the variant construct containing the rs35036378 SNP allele had approximately 50% less activity relative to the wild-type construct. We conclude that the rs35036378 SNP appears to cause a reduced promoter activity of the ESR2 gene.Item A genetic investigation into a Lebanese population: from STR’s to SNP’s(2018-06-26) Ghemrawi, Mirna; Walsh, SusanIn the past, the present and the future, Lebanon has been an important link between the East and the West. It was always known as the ‘Switzerland of the East’. Over the years, it was a hotspot for different civilizations that uniquely shaped the genomic backbone of the current Lebanese. It is also a good representation of genetically admixed individuals with diverse phenotype characteristics and unique features. Lebanon, quite like other Middle Eastern populations, lacks sufficient genetic studies that helps to better comprehend the complex genomic composition of different traits and diseases. The lack of good representation of the Middle East and North Africa (MENA) region in global studies has led to ambiguity in discovering special ancestry markers and patterns in the Lebanese genome. Yet, in this study, a thorough investigation into a Lebanese collection shows new patterns that potentially would be helpful in forensic and genealogical applications. The investigation into the autosomal and Y-STRs revealed unique alleles that would be valuable in future forensic investigation analysis. In addition, the assessment of phenotype prediction models to predict eye, hair and skin color showed promising results in terms of prediction performance. Those results encourage the future use of intelligence tools in the regions that in return would aid in serving justice and furthering science research. In fact, ancestry and genetic distance studies confirms the presence of admixture within Lebanon between Europe and North Africa.Item Genetic variation in radiation and platinum pathways predicts severe acute radiation toxicity in patients with esophageal adenocarcinoma treated with cisplatin-based preoperative radiochemotherapy: results from the Eastern Cooperative Oncology Group.(Springer, 2011-10) Yoon, H. H.; Catalano, P.; Gibson, M. K.; Skaar, T. C.; Philips, S.; Montgomery, E. A.; Hafez, M. J.; Powell, M.; Liu, G.; Forastiere, A. A.; Benson, A. B.; Kleinberg, L. R.; Murphy, K. M.PURPOSE: Germline genetic variations may partly explain the clinical observation that normal tissue tolerance to radiochemotherapy varies by individual. Our objective was to evaluate the association between single-nucleotide polymorphisms (SNPs) in radiation/platinum pathways and serious treatment-related toxicity in subjects with esophageal adenocarcinoma who received cisplatin-based preoperative radiochemotherapy. METHODS: In a multicenter clinical trial (E1201), 81 eligible treatment-naïve subjects with resectable esophageal adenocarcinoma received cisplatin-based chemotherapy concurrent with radiotherapy, with planned subsequent surgical resection. Toxicity endpoints were defined as grade ≥3 radiation-related or myelosuppressive events probably or definitely related to therapy, occurring during or up to 6 weeks following the completion of radiochemotherapy. SNPs were analyzed in 60 subjects in pathways related to nucleotide/base excision- or double stranded break repair, or platinum influx, efflux, or detoxification. RESULTS: Grade ≥3 radiation-related toxicity (mostly dysphagia) and myelosuppression occurred in 18 and 33% of subjects, respectively. The variant alleles of the XRCC2 5' flanking SNP (detected in 28% of subjects) and of GST-Pi Ile-105-Val (detected in 65% of subjects) were each associated with higher odds of serious radiation-related toxicity compared to the major allele homozygote (47% vs. 9%, and 31% vs. 0%, respectively; P = 0.005). No SNP was associated with myelosuppression. CONCLUSIONS: This novel finding in a well-characterized cohort with robust endpoint data supports further investigation of XRCC2 and GST-Pi as potential predictors of radiation toxicity.Item The impact of glucocorticoid polymorphisms on markers of neonatal respiratory disease after antenatal betamethasone administration.(Elsevier, 2013-03) Haas, David M.; Dantzer, Jessica; Lehmann, Amalia S.; Philips, Santosh; Skaar, Todd C.; McCormick, Catherine L.; Hebbring, Scott J.; Jung, Jeesun; Li, LangOBJECTIVE: We previously demonstrated that maternal and fetal genotypes are associated independently with neonatal respiratory distress syndrome. The objective of the current study was to determine the impact of maternal and fetal single-nucleotide polymorphisms (SNPs) in key betamethasone pathways on respiratory outcomes that serve as markers for severity of disease. STUDY DESIGN: DNA was obtained from women who were given betamethasone and from their infants. Samples were genotyped for 73 exploratory drug metabolism and glucocorticoid pathway SNPs. Clinical variables and neonatal outcomes were obtained. Logistic regression analysis that controlled for relevant clinical variables to determine SNP impact on bronchopulmonary dysplasia (BPD), the need for respiratory support, and surfactant therapy use was performed. RESULTS: Data from 109 women who delivered 117 infants were analyzed: 14.5% of the infants experienced BPD; 70.8% of the infants needed some respiratory support after birth, and 27.5% of the infants needed surfactant therapy. In a multivariable regression analysis, gestational age at delivery was associated with most neonatal respiratory outcomes (P ≤ .01), and chorioamnionitis was associated with BPD (P < .03). The following genotypes were associated with respiratory severity outcomes: BPD-fetal Importin 13 gene (IPO13; rs4448553; odds ratio [OR], 0.01; 95% confidence interval [CI], 0.00-0.92); surfactant use-maternal IPO13 (rs2428953 and 2486014; OR, 13.8; 95% CI, 1.80-105.5; and OR, 35.5; 95% CI, 1.71-736.6, respectively). CONCLUSION: Several discrete maternal and fetal SNPs in the IPO13 family may be associated with neonatal respiratory outcomes after maternal antenatal corticosteroid treatment for anticipated preterm birth.Item In silico and in vitro identification of microRNAs that regulate hepatic nuclear factor 4α expression(American Society for Pharmacology and Experimental Therapeutics, 2012-04) Ramamoorthy, Anuradha; Li, Lang; Gaedigk, Andrea; Bradford, L. DiAnne; Benson, Eric A.; Flockhart, David A.; Skaar, Todd C.Hepatic nuclear factor 4α (HNF4A) is a nuclear transcription factor that regulates the expression of many genes involved in drug disposition. To identify additional molecular mechanisms that regulate HNF4A, we identified microRNAs (miRNAs) that target HNF4A expression. In silico analyses suggested that HNF4A is targeted by many miRNAs. We conducted in vitro studies to validate several of these predictions. With use of an HNF4A 3'-untranslated region (UTR) luciferase reporter assay, five of six miRNAs tested significantly down-regulated (∼20-40%) the luciferase activity. In HepG2 cells, miR-34a and miR-449a also down-regulated the expression of both the HNF4A protein and an HNF4A target gene, PXR (∼30-40%). This regulation appeared without reduction in HNF4A mRNA expression, suggesting that they must be blocking HNF4A translation. Using additional bioinformatic algorithms, we identified polymorphisms that are predicted to alter the miRNA targeting of HNF4A. Luciferase assays indicated that miR-34a and miR-449a were less effective in regulating a variant (rs11574744) than the wild-type HNF4A 3'-UTR. In vivo, subjects with the variant HNF4A had lower CYP2D6 enzyme activity, although this result was not statistically significant (p = 0.16). In conclusion, our findings demonstrate strong evidence for a role of miRNAs in the regulation of HNF4A.Item Nuclear receptor coregulator SNP discovery and impact on breast cancer risk.(BioMed Central, 2009-12-14) Hartmaier, Ryan J.; Tchatchou, Sandrine; Richter, Alexandra S.; Wang, Jay; McGuire, Sean E.; Skaar, Todd C.; Rae, Jimmy M.; Hemminki, Kari; Sutter, Christian; Ditsch, Nina; Bugert, Peter; Weber, Bernhard H. F.; Niederacher, Dieter; Arnold, Norbert; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Schmutzler, Rita K.; Meindl, Alfons; Bartram, Claus R.; Burwinkel, Barbara; Oesterreich, SteffiBACKGROUND: Coregulator proteins are "master regulators", directing transcriptional and posttranscriptional regulation of many target genes, and are critical in many normal physiological processes, but also in hormone driven diseases, such as breast cancer. Little is known on how genetic changes in these genes impact disease development and progression. Thus, we set out to identify novel single nucleotide polymorphisms (SNPs) within SRC-1 (NCoA1), SRC-3 (NCoA3, AIB1), NCoR (NCoR1), and SMRT (NCoR2), and test the most promising SNPs for associations with breast cancer risk. METHODS: The identification of novel SNPs was accomplished by sequencing the coding regions of these genes in 96 apparently normal individuals (48 Caucasian Americans, 48 African Americans). To assess their association with breast cancer risk, five SNPs were genotyped in 1218 familial BRCA1/2-mutation negative breast cancer cases and 1509 controls (rs1804645, rs6094752, rs2230782, rs2076546, rs2229840). RESULTS: Through our resequencing effort, we identified 74 novel SNPs (30 in NCoR, 32 in SMRT, 10 in SRC-3, and 2 in SRC-1). Of these, 8 were found with minor allele frequency (MAF) >5% illustrating the large amount of genetic diversity yet to be discovered. The previously shown protective effect of rs2230782 in SRC-3 was strengthened (OR = 0.45 [0.21-0.98], p = 0.04). No significant associations were found with the other SNPs genotyped. CONCLUSIONS: This data illustrates the importance of coregulators, especially SRC-3, in breast cancer development and suggests that more focused studies, including functional analyses, should be conducted.Item Regional imaging genetic enrichment analysis(Oxford University Press, 2020-04-15) Yao, Xiaohui; Cong, Shan; Yan, Jingwen; Risacher, Shannon L.; Saykin, Andrew J.; Moore, Jason H.; Shen, Li; Radiology and Imaging Sciences, School of MedicineMotivation: Brain imaging genetics aims to reveal genetic effects on brain phenotypes, where most studies examine phenotypes defined on anatomical or functional regions of interest (ROIs) given their biologically meaningful interpretation and modest dimensionality compared with voxelwise approaches. Typical ROI-level measures used in these studies are summary statistics from voxelwise measures in the region, without making full use of individual voxel signals. Results: In this article, we propose a flexible and powerful framework for mining regional imaging genetic associations via voxelwise enrichment analysis, which embraces the collective effect of weak voxel-level signals and integrates brain anatomical annotation information. Our proposed method achieves three goals at the same time: (i) increase the statistical power by substantially reducing the burden of multiple comparison correction; (ii) employ brain annotation information to enable biologically meaningful interpretation and (iii) make full use of fine-grained voxelwise signals. We demonstrate our method on an imaging genetic analysis using data from the Alzheimer's Disease Neuroimaging Initiative, where we assess the collective regional genetic effects of voxelwise FDG-positron emission tomography measures between 116 ROIs and 565 373 single-nucleotide polymorphisms. Compared with traditional ROI-wise and voxelwise approaches, our method identified 2946 novel imaging genetic associations in addition to 33 ones overlapping with the two benchmark methods. In particular, two newly reported variants were further supported by transcriptome evidences from region-specific expression analysis. This demonstrates the promise of the proposed method as a flexible and powerful framework for exploring imaging genetic effects on the brain. Availability and implementation: The R code and sample data are freely available at https://github.com/lshen/RIGEA.