- Browse by Subject
Browsing by Subject "Viral load"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item HIV infection drives IgM and IgG3 subclass bias in Plasmodium falciparum-specific and total immunoglobulin concentration in Western Kenya(BioMed Central, 2019-08-30) Odhiambo, Eliud O.; Datta, Dibyadyuti; Guyah, Bernard; Ayodo, George; Ondigo, Bartholomew N.; Abong’o, Benard O.; John, Chandy C.; Frosch, Anne E. P.; Pediatrics, School of MedicineBACKGROUND: HIV infection is associated with more frequent and severe episodes of malaria and may be the result of altered malaria-specific B cell responses. However, it is poorly understood how HIV and the associated lymphopenia and immune activation affect malaria-specific antibody responses. METHODS: HIV infected and uninfected adults were recruited from Bondo subcounty hospital in Western Kenya at the time of HIV testing (antiretroviral and co-trimoxazole prophylaxis naïve). Total and Plasmodium falciparum apical membrane antigen-1 (AMA1) and glutamate rich protein-R0 (GLURP-R0) specific IgM, IgG and IgG subclass concentrations was measured in 129 and 52 of recruited HIV-infected and uninfected individuals, respectively. In addition, HIV-1 viral load (VL), CD4+ T cell count, and C-reactive protein (CRP) concentration was quantified in study participants. Antibody levels were compared based on HIV status and the associations of antibody concentration with HIV-1 VL, CD4+ count, and CRP levels was measured using Spearman correlation testing. RESULTS: Among study participants, concentrations of IgM, IgG1 and IgG3 antibodies to AMA1 and GLURP-R0 were higher in HIV infected individuals compared to uninfected individuals (all p < 0.001). The IgG3 to IgG1 ratio to both AMA1 and GLURP-R0 was also significantly higher in HIV-infected individuals (p = 0.02). In HIV-infected participants, HIV-1 VL and CRP were weakly correlated with AMA1 and GLURP-R0 specific IgM and IgG1 concentrations and total (not antigen specific) IgM, IgG, IgG1, and IgG3 concentrations (all p < 0.05), suggesting that these changes are related in part to viral load and inflammation. CONCLUSIONS: Overall, HIV infection leads to a total and malaria antigen-specific immunoglobulin production bias towards higher levels of IgM, IgG1, and IgG3, and HIV-1 viraemia and systemic inflammation are weakly correlated with these changes. Further assessments of antibody affinity and function and correlation with risk of clinical malaria, will help to better define the effects of HIV infection on clinical and biological immunity to malaria.Item Viral shedding and antibody response in 37 patients with MERS-coronavirus infection(Oxford, 2016-11) Corman, Victor M.; Albarrak, Ali M.; Omrani, Ali Senosi; Albarrak, Mohammed M.; Farah, Mohamed Elamin; Almasri, Malak; Muth, Doreen; Sieberg, Andrea; Meyer, Benjamin; Assiri, Abdullah M.; Binger, Tabea; Steinhagen, Katja; Lattwein, Erik; Al-Tawfiq, Jaffar; Müller, Marcel A.; Drosten, Christian; Memish, Ziad A.; Department of Medicine, IU School of MedicineBackground. The Middle East respiratory syndrome (MERS) coronavirus causes isolated cases and outbreaks of severe respiratory disease. Essential features of the natural history of disease are poorly understood. Methods. We studied 37 adult patients infected with MERS coronavirus for viral load in the lower and upper respiratory tracts (LRT and URT, respectively), blood, stool, and urine. Antibodies and serum neutralizing activities were determined over the course of disease. Results. One hundred ninety-nine LRT samples collected during the 3 weeks following diagnosis yielded virus RNA in 93% of tests. Average (maximum) viral loads were 5 × 106 (6 × 1010) copies/mL. Viral loads (positive detection frequencies) in 84 URT samples were 1.9 × 104 copies/mL (47.6%). Thirty-three percent of all 108 serum samples tested yielded viral RNA. Only 14.6% of stool and 2.4% of urine samples yielded viral RNA. All seroconversions occurred during the first 2 weeks after diagnosis, which corresponds to the second and third week after symptom onset. Immunoglobulin M detection provided no advantage in sensitivity over immunoglobulin G (IgG) detection. All surviving patients, but only slightly more than half of all fatal cases, produced IgG and neutralizing antibodies. The levels of IgG and neutralizing antibodies were weakly and inversely correlated with LRT viral loads. Presence of antibodies did not lead to the elimination of virus from LRT. Conclusions. The timing and intensity of respiratory viral shedding in patients with MERS closely matches that of those with severe acute respiratory syndrome. Blood viral RNA does not seem to be infectious. Extrapulmonary loci of virus replication seem possible. Neutralizing antibodies do not suffice to clear the infection.