- Browse by Subject
Browsing by Subject "functional magnetic resonance imaging"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Accumulation of high magnitude acceleration events predicts cerebrovascular reactivity changes in female high school soccer athletes(Springer, 2018) Svaldi, Diana O.; Joshi, Chetas; McCuen, Emily C.; Music, Jacob P.; Hannemann, Robert; Leverenz, Larry J.; Nauman, Eric A.; Talavage, Thomas M.; Neurology, School of MedicineMitigating the effects of repetitive exposure to head trauma has become a major concern for the general population, given the growing body of evidence that even asymptomatic exposure to head accelerations is linked with increased risk for negative life outcomes and that risk increases as exposure is prolonged over many years. Among women's sports, soccer currently exhibits the highest growth in participation and reports the largest number of mild traumatic brain injuries annually, making female soccer athletes a relevant population in assessing the effects of repetitive exposure to head trauma. Cerebrovascular biomarkers may be useful in assessing the effects of repetitive head trauma, as these are thought to contribute directly to neurocognitive symptoms associated with mild traumatic brain injury. Here we use fMRI paired with a hypercapnic breath hold task along with monitoring of head acceleration events, to assess the relationship between cerebrovascular brain changes and exposure to repetitive head trauma over a season of play in female high school soccer athletes. We identified longitudinal changes in cerebrovascular reactivity that were significantly associated with prolonged accumulation to high magnitude (> 75th percentile) head acceleration events. Findings argue for active monitoring of athletes during periods of exposure to head acceleration events, illustrate the importance of collecting baseline (i.e., pre-exposure) measurements, and suggest modeling as a means of guiding policy to mitigate the effects of repetitive head trauma.Item A cross-linguistic fMRI study of perception of intonation and emotion in Chinese(Wiley, 2003-02-11) Gandour, Jack; Wong, Donald; Dzemidzic, Mario; Lowe, Mark; Tong, Yunxia; Li, Xiaojian; Anatomy and Cell Biology, School of MedicineConflicting data from neurobehavioral studies of the perception of intonation (linguistic) and emotion (affective) in spoken language highlight the need to further examine how functional attributes of prosodic stimuli are related to hemispheric differences in processing capacity. Because of similarities in their acoustic profiles, intonation and emotion permit us to assess to what extent hemispheric lateralization of speech prosody depends on functional instead of acoustical properties. To examine how the brain processes linguistic and affective prosody, an fMRI study was conducted using Chinese, a tone language in which both intonation and emotion may be signaled prosodically, in addition to lexical tones. Ten Chinese and 10 English subjects were asked to perform discrimination judgments of intonation (I: statement, question) and emotion (E: happy, angry, sad) presented in semantically neutral Chinese sentences. A baseline task required passive listening to the same speech stimuli (S). In direct between‐group comparisons, the Chinese group showed left‐sided frontoparietal activation for both intonation (I vs. S) and emotion (E vs. S) relative to baseline. When comparing intonation relative to emotion (I vs. E), the Chinese group demonstrated prefrontal activation bilaterally; parietal activation in the left hemisphere only. The reverse comparison (E vs. I), on the other hand, revealed that activation occurred in anterior and posterior prefrontal regions of the right hemisphere only. These findings show that some aspects of perceptual processing of emotion are dissociable from intonation, and, moreover, that they are mediated by the right hemisphere.Item Increased brain activation during working memory processing after pediatric mild traumatic brain injury (mTBI).(IOS Press, 2015) Westfall, Daniel R.; West, John D.; Bailey, Jessica N.; Arnold, Todd W.; Kersey, Patrick A.; Saykin, Andrew J.; McDonald, Brenna C.; Department of Radiology and Imaging Sciences, IU School of MedicinePurpose: The neural substrate of post-concussive symptoms following the initial injury period after mild traumatic brain injury (mTBI) in pediatric populations remains poorly elucidated. This study examined neuropsychological, behavioral, and brain functioning in adolescents post-mTBI to assess whether persistent differences were detectable up to a year post-injury. Methods: Nineteen adolescents (mean age 14.7 years) who experienced mTBI 3–12 months previously (mean 7.5 months) and 19 matched healthy controls (mean age 14.0 years) completed neuropsychological testing and an fMRI auditory-verbal N-back working memory task. Parents completed behavioral ratings. Results: No between-group differences were found for cognition, behavior, or N-back task performance, though the expected decreased accuracy and increased reaction time as task difficulty increased were apparent. However, the mTBI group showed significantly greater brain activation than controls during the most difficult working memory task condition. Conclusion: Greater working memory task-related activation was found in adolescents up to one year post-mTBI relative to controls, potentially indicating compensatory activation to support normal task performance. Differences in brain activation in the mTBI group so long after injury may indicate residual alterations in brain function much later than would be expected based on the typical pattern of natural recovery, which could have important clinical implications.Item Neural correlates of segmental and tonal information in speech perception(Wiley, 2003-10-27) Gandour, Jack; Xu, Yisheng; Wong, Donald; Dzemidzic, Mario; Lowe, Mark; Li, Xiaojian; Tong, Yunxia; Anatomy and Cell Biology, School of MedicineThe Chinese language provides an optimal window for investigating both segmental and suprasegmental units. The aim of this cross‐linguistic fMRI study is to elucidate neural mechanisms involved in extraction of Chinese consonants, rhymes, and tones from syllable pairs that are distinguished by only one phonetic feature (minimal) vs. those that are distinguished by two or more phonetic features (non‐minimal). Triplets of Chinese monosyllables were constructed for three tasks comparing consonants, rhymes, and tones. Each triplet consisted of two target syllables with an intervening distracter. Ten Chinese and English subjects were asked to selectively attend to targeted sub‐syllabic components and make same‐different judgments. Direct between‐group comparisons in both minimal and non‐minimal pairs reveal increased activation for the Chinese group in predominantly left‐sided frontal, parietal, and temporal regions. Within‐group comparisons of non‐minimal and minimal pairs show that frontal and parietal activity varies for each sub‐syllabic component. In the frontal lobe, the Chinese group shows bilateral activation of the anterior middle frontal gyrus (MFG) for rhymes and tones only. Within‐group comparisons of consonants, rhymes, and tones show that rhymes induce greater activation in the left posterior MFG for the Chinese group when compared to consonants and tones in non‐minimal pairs. These findings collectively support the notion of a widely distributed cortical network underlying different aspects of phonological processing. This neural network is sensitive to the phonological structure of a listener's native language.