- Browse by Subject
Browsing by Subject "hedgehog signaling"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Distinct transcriptomic landscapes of cutaneous basal cell carcinomas and squamous cell carcinomas(Elsevier, 2019) Wan, Jun; Dai, Hongji; Zhang, Xiaoli; Liu, Sheng; Lin, Yuan; Somani, Ally-Khan; Xie, Jingwu; Han, Jiali; Medical and Molecular Genetics, School of MedicineThe majority of non-melanoma skin cancer (NMSC) is cutaneous basal cell carcinoma (BCC) or squamous cell carcinoma (SCC), which are also called keratinocyte carcinomas, as both of them originate from keratinocytes. The incidence of keratinocyte carcinomas is over 5 million per year in the US, three-fold higher than the total incidence of all other types of cancer combined. While there are several reports on gene expression profiling of BCC and SCC, there are significant variations in the reported gene expression changes in different studies. One reason is that tumor-adjacent normal skin specimens were not included in many studies as matched controls. Furthermore, while numerous studies of skin stem cells in mouse models have been reported, their relevance to human skin cancer remains unknown. In this report, we analyzed gene expression profiles of paired specimens of keratinocyte carcinomas with their matched normal skin tissues as the control. Among several novel findings, we discovered a significant number of zinc finger encoding genes up-regulated in human BCC. In BCC, a novel link was found between hedgehog signaling, Wnt signaling, and the cilium. While the SCC cancer-stem-cell gene signature is shared between human and mouse SCCs, the hair follicle stem-cell signature of mice was not highly represented in human SCC. Differential gene expression (DEG) in human BCC shares gene signature with both bulge and epidermal stem cells. We have also determined that human BCCs and SCCs have distinct gene expression patterns, and some of them are not fully reflected in current mouse models.Item Sesn3 deficiency promotes carcinogen-induced hepatocellular carcinoma via regulation of the hedgehog pathway(Elsevier, 2019-10-01) Liu, Yunjian; Kim, Hyeong Geug; Dong, Edward; Dong, Chuanpeng; Huang, Menghao; Liu, Yunlong; Liangpunsakul, Suthat; Dong, Xiaocheng Charlie; Biochemistry and Molecular Biology, School of MedicineSestrin 3 (Sesn3) belongs to a small protein family that has been implicated in multiple biological processes including anti-oxidative stress, anti-aging, cell signaling, and metabolic homeostasis. However, the role of Sesn3 in hepatocellular carcinoma (HCC) remains unclear. Here we generated a Sesn3 knockout mouse model and induced HCC development by a combination of a single dose of diethylnitrosamine and chronic feeding of a choline deficient-high fat diet. After 6 months of the dietary treatment, Sesn3 knockout mice developed more severe HCC with higher levels of alpha-fetoprotein, arginase 1, and cytokeratin 19, but also higher metastatic rates than wild-type mice. Histological analysis revealed elevated extracellular matrix and cancer stem cell markers including Acta2, Cd44, and Cd133. Signaling analysis showed activated IL6-Stat3 and Akt pathways. Biochemical and microscopic analyses uncovered a novel inhibitory regulation of Gli2, a downstream transcription factor of the hedgehog signaling, by Sesn3. Two of the Gli2-regulated genes – Pdgfrb and Cd44 were upregulated in the Sesn3-deficient liver tissue. In conclusion, our data suggest that Sesn3 plays a critical tumor suppressor role in the liver partly through the inhibition of the hedgehog signaling.