- Browse by Subject
Browsing by Subject "phonology"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comparison of rhyming and word generation with FMRI(Wiley Open Access, 2000-06-06) Lurito, Joseph T.; Kareken, David A.; Lowe, Mark J.; Chen, Shen Hsing A.; Mathews, Vincent P.; Neurology, School of MedicineFunctional magnetic resonance imaging (FMRI) has been successfully used to non‐invasively map language function, but has several disadvantages. These include severe motion sensitivity, which limits overt verbal responses in behavioral paradigms, such as word generation. The lack of overt responses prevents behavioral validation, making data interpretation difficult. Our objective was to compare the FMRI activation patterns of a novel silent rhyme determination task requiring a non‐verbal response, to covert word generation from visually presented letters. Five strongly right‐handed subjects performed both tasks during multi‐slice coronal echo‐planar T2*–weighted FMRI. Single subject activation maps were generated for each task by correlation analysis of single pixel time series to a boxcar reference function. These maps for the two tasks were separately interpolated to 2563, transformed into Talairach space, summed, and thresholded at t>6. Combined activation maps from both tasks showed similar robust perisylvian language area activation, including inferior frontal gyrus, posterior superior temporal lobe, and fusiform gyrus. Subjects performed well on the rhyming task, which activated left hemisphere cortical regions more selectively than the word generation task. The rhyming task showed less activation than the word generation task in areas typically not considered specifically related to language function, such as the dorsolateral prefrontal cortex and anterior cingulate. The rhyming task is a useful tool for brain mapping and clinical applications, potentially more specific to cortical language areas than verbal fluency.Item Neural correlates of segmental and tonal information in speech perception(Wiley, 2003-10-27) Gandour, Jack; Xu, Yisheng; Wong, Donald; Dzemidzic, Mario; Lowe, Mark; Li, Xiaojian; Tong, Yunxia; Anatomy and Cell Biology, School of MedicineThe Chinese language provides an optimal window for investigating both segmental and suprasegmental units. The aim of this cross‐linguistic fMRI study is to elucidate neural mechanisms involved in extraction of Chinese consonants, rhymes, and tones from syllable pairs that are distinguished by only one phonetic feature (minimal) vs. those that are distinguished by two or more phonetic features (non‐minimal). Triplets of Chinese monosyllables were constructed for three tasks comparing consonants, rhymes, and tones. Each triplet consisted of two target syllables with an intervening distracter. Ten Chinese and English subjects were asked to selectively attend to targeted sub‐syllabic components and make same‐different judgments. Direct between‐group comparisons in both minimal and non‐minimal pairs reveal increased activation for the Chinese group in predominantly left‐sided frontal, parietal, and temporal regions. Within‐group comparisons of non‐minimal and minimal pairs show that frontal and parietal activity varies for each sub‐syllabic component. In the frontal lobe, the Chinese group shows bilateral activation of the anterior middle frontal gyrus (MFG) for rhymes and tones only. Within‐group comparisons of consonants, rhymes, and tones show that rhymes induce greater activation in the left posterior MFG for the Chinese group when compared to consonants and tones in non‐minimal pairs. These findings collectively support the notion of a widely distributed cortical network underlying different aspects of phonological processing. This neural network is sensitive to the phonological structure of a listener's native language.