Memristor: modulating resistance via electron-ion interactions

Date
2010-04-09
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Memristor – a resistor with memory – is a long-postulated but recently discovered new circuit element that complements the three well-known circuit elements, namely a resistor, a capacitor, and an inductor. It was experimentally realized in a titanium oxide thin film doped with oxygen vacancies. The resistance of a memristor, and memristive system in general, depends on the electrical charge that has flown through it and not just on the voltage applied to it. We use a nonlinear, asymmetric drift model to describe the motion of dopant ions that, in turn, determines the effective resistance of the memristor. This interplay between ionic and electronic transport provides a natural mechanism for memory and switching behavior. We obtain the electrical properties of basic memristive circuits, and show that they exhibit non-exponential current and charge decay, negative differential conductance, and frequency-dependent hysteresis in the current-voltage characteristics. We then present a Lagrangian approach to describe the dynamics of memristive systems and its implications to quantum effects in memristors and other memory elements such as mem-capacitors and mem-inductors.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Yogesh N. Joglekar. (2010, April 9). Memristor: modulating resistance via electron-ion interactions. Poster session presented at IUPUI Research Day 2010, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}