Adaptive empirical pattern transformation (ADEPT) with application to walking stride segmentation

Date
2021-04-10
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford University Press
Abstract

Quantifying gait parameters and ambulatory monitoring of changes in these parameters have become increasingly important in epidemiological and clinical studies. Using high-density accelerometry measurements, we propose adaptive empirical pattern transformation (ADEPT), a fast, scalable, and accurate method for segmentation of individual walking strides. ADEPT computes the covariance between a scaled and translated pattern function and the data, an idea similar to the continuous wavelet transform. The difference is that ADEPT uses a data-based pattern function, allows multiple pattern functions, can use other distances instead of the covariance, and the pattern function is not required to satisfy the wavelet admissibility condition. Compared to many existing approaches, ADEPT is designed to work with data collected at various body locations and is invariant to the direction of accelerometer axes relative to body orientation. The method is applied to and validated on accelerometry data collected during a equation M1-m outdoor walk of equation M2 study participants wearing accelerometers on the wrist, hip, and both ankles. Additionally, all scripts and data needed to reproduce presented results are included in supplementary material available at Biostatistics online.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Karas M, Stra Czkiewicz M, Fadel W, Harezlak J, Crainiceanu CM, Urbanek JK. Adaptive empirical pattern transformation (ADEPT) with application to walking stride segmentation. Biostatistics. 2021;22(2):331-347. doi:10.1093/biostatistics/kxz033
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Biostatistics
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
This item is under embargo {{howLong}}