Eukaryotic translation initiation factor 5A inhibition alters physiopathology and immune responses in a “humanized” transgenic mouse model of type 1 diabetes

Date
2014-04-01
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Physiological Society (APS)
Abstract

Therapeutic options for treatment of type 1 diabetes (T1D) are still missing. New avenues for immune modulation need to be developed. Here we attempted at altering the diabetes outcome of our humanized model of T1D by inhibiting translation-initiation factor eIF5A hypusination in vivo. Double-transgenic (DQ8-GAD65) mice were immunized with adenoviral vectors carrying GAD65 for diabetes induction. Animals were subsequently treated with deoxyhypusine synthase (DHS) inhibitor GC7 and monitored for diabetes development over time. On one hand, helper CD4+ T cells were clearly affected by the downregulation of the eIF5A not just at the pancreas level but overall. On the other hand, the T regulatory cell component of CD4 responded with activation and proliferation significantly higher than in the non-GC7-treated controls. Female mice seemed to be more susceptible to these effects. All together, our results show for the first time that downregulation of eIF5A through inhibition of DHS altered the physiopathology and observed immune outcome of diabetes in an animal model that closely resembles human T1D. Although the development of diabetes could not be abrogated by DHS inhibition, the immunomodulatory capacity of this approach may supplement other interventions directed at increasing regulation of autoreactive T cells in T1D.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Imam, S., Mirmira, R. G., & Jaume, J. C. (2014). Eukaryotic translation initiation factor 5A inhibition alters physiopathology and immune responses in a “humanized” transgenic mouse model of type 1 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 306(7), E791–E798. http://doi.org/10.1152/ajpendo.00537.2013
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
American Journal of Physiology - Endocrinology and Metabolism
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
This item is under embargo {{howLong}}