Cellular & Molecular Mechanisms That Contribute to the Early Development of Skeletal Muscle & Systemic Insulin Resistance

Date
2019-10
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2019
Department
Cellular & Integrative Physiology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Insulin resistance starts years before type 2 diabetes (T2D) diagnosis, even before recognition of prediabetes. Mice on a high fat diet have a similar early onset of insulin resistance, yet the mechanism remains unknown. Several studies have demonstrated that skeletal muscle insulin resistance resulting from obesity or high fat feeding does not stem from defects in proximal insulin signaling. Our lab discovered that excess plasma membrane cholesterol impairs insulin action. Excess cholesterol in the plasma membrane causes a loss of cortical actin filaments that are essential for glucose transporter GLUT4 regulation by insulin. Our cell studies further revealed that increased hexosamine biosynthesis pathway (HBP) activity increases O-linked N-acetylglucosamine modification of the transcription factor Sp1, leading to transcription of HMG-CoA reductase (HMGR), the rate-limiting enzyme in cholesterol biosynthesis. Our central hypothesis is that cholesterol accumulation mediated by HBP activity is an early reversible mechanism of high-fat diet-induced insulin resistance. We performed a series of studies and found that early high-fat feeding-induced insulin resistance is associated with a buildup of cholesterol in skeletal muscle membranes (SMM). Akin to the antidiabetic effect of caloric restriction, we found that high-fat diet removal fully mitigated SMM cholesterol accumulation and insulin resistance. Furthermore, using the cholesterol-binding agent methyl-β-cyclodextrin (MβCD), studies established causality between excess SMM cholesterol and insulin resistance. To begin to assess the role of the HBP/Sp1 in contributing to de novo cholesterol biosynthesis, SMM accumulation, and insulin resistance we treated high-fat fed mice with an Sp1 inhibitor, mithramycin. We found that mithramycin prevented SMM cholesterol accumulation and insulin resistance. This series of studies provide evidence that HBP/Sp1-mediated cholesterol accumulation in SMM is a causal, early and reversible mechanism of whole body insulin resistance.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}