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ABSTRACT 

Joel P. Bercu 

ADVANCING TOXICOLOGY-BASED CANCER RISK ASSESSMENT WITH 

INFORMATICS 

Since exposure to carcinogens can occur in the environment from various point 

sources, cancer risk assessment attempts to define and limit potential exposure such 

that the risk of developing cancer is negligible.  While cancer risk assessment is widely 

used with certain methodologies well accepted in the scientific literature and regulatory 

guidances, there are still gaps which increase uncertainties when assessing risk 

including: (1) mixtures of genotoxins, (2) genotoxic metabolites, and (3) nongenotoxic 

carcinogens.  An in silico model was developed to predict the cancer risk of a genotoxin 

which improved methodology for a single compound and mixtures.  Monte Carlo 

simulations performed with a carcinogenicity potency database to estimate the overall 

carcinogenic risk of a mixture of genotoxic compounds showed that structural similarity 

would not likely increase the overall cancer risk.  A cancer risk model was developed for 

genotoxic metabolites using excretion material in both animals and humans to determine 

the probability not exceeding a 1 in 100,000 excess cancer risk.  Two model 

nongenotoxic compounds (fenofibrate and methapyraline) were tested in short-term 

microarray studies to develop a framework for cancer risk assessment.  It was 

determined that a threshold for potential key events could be derived using benchmark 

dose analysis in combination with well developed ontologies (Kegg/GO), which were at 

or below measured tumorigenic and precursor events.  In conclusion, informatics was 

effective in advancing toxicology-based cancer risk assessment using databases and 

predictive techniques which fill critical gaps in its methodology. 

Malika Mahoui Ph.D., Chair
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INTRODUCTION 

Overview of Specific Aims 

Cancer is a devastating disease and exposure to carcinogens through food, 

water, air etc. contributes to the overall cancer burden.  Since eliminating all carcinogens 

from the environment is impossible, it is essential to quantify the potential risks and 

focus on those situations where reducing exposure can protect human health.  

Unfortunately current risk assessment methods do not address exposure to mixtures or 

metabolites, which are common, and public pressure to reduce animal testing prevent 

accumulation of sufficient animal data to perform a more traditional risk assessment. 

Informatics and gene expression technologies offer solutions to gaps in 

carcinogenicity risk assessment methodology.  We proposed to use these technologies 

to identify the threshold of toxicological concern (TTC), i.e. the dose at which the excess 

cancer risk for humans is negligible, for mixtures of chemicals and metabolites.  The 

TTC concept is a common risk assessment tool that is currently applied to food, water, 

pharmaceuticals, and personal care products for exposure to low levels of genotoxic 

substances.  The overall goal of this research was to develop 3 new computational 

approaches to identify a TTC that can be used in a carcinogenicity risk 

assessment framework when limited data are available.  These approaches are 

novel changes as there are no scientifically-based risk assessment strategies for these 

potential human carcinogens.  Computational strategies can provide leverage to deal 

with the limitations raised by lack of data in these cases. 

Although the use of a TTC is common for single chemicals, the approach has not 

been applied to mixtures.  The first goal was to provide risk assessment methodology for 

mixtures of genotoxic compounds.  In Aim 1, a carcinogenicity potency database 

(CPDB), was analyzed to determine the risks of multiple genotoxic compounds by 

establishing the TTC for genotoxic mixtures. 
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Many chemicals are metabolized to excretable products, but there is no risk 

assessment methodology available to determine the carcinogenic risk when metabolites 

are genotoxic.  The second goal was to provide a risk assessment framework for 

establishing provisional thresholds for exposure to genotoxic metabolites.  Some 

suggest that the TTC concept is an appropriate method for assessing metabolite risk, 

but the hypothesis has not been tested.  In Aim 2, the CPDB was used to develop a 

model to determine the carcinogenic risk of a compound if its metabolite is 

genotoxic.  

Proving that a threshold exists has a dramatic impact in the risk assessment of a 

chemical.  However, current approaches require extensive mechanistic analysis in order 

to establish a threshold.  The final goal was to determine if global gene expression data 

from short-term microarray studies and systems biology analyses can be used to 

establish effect- thresholds, as a surrogate for the TTC, for nongenotoxic carcinogens to 

develop a permissible daily exposure in lieu of a more conservative approach.  In Aim 3, 

a gene expression analysis of nongenotoxic carcinogens was used to determine if 

mining gene expression data can establish existence of an effect-threshold. 

This chapter will provide background information and discuss the importance of 

Specific Aims 1, 2, and 3.  The subsequent chapters (2-5) will provide the studies which 

satisfy the Specific Aims.  The final chapter (Chapter 6) will provide some overall 

discussion of the Aims in context with the data presented in the previous chapters. 

Background and Significance 

Cancer risk assessment 

Cancer risk assessment is a critical part of public health because it allows the 

effective control of potentially dangerous chemicals in the environment.  While extensive 

efforts have been made over the years, there are still many areas that need 

improvement especially when gaps are observed in the toxicology data.  The purposes 
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of Aim 1, 2, and 3 were to advance current cancer risk assessment techniques 

specifically for those instances where toxicology data is limited. 

Overview of current cancer risk assessment methodology 

Cancer is a devastating disease and is either not preventable (e.g. genetic 

predisposition), part of life-style choices made by the individual (e.g. smoking, diet, etc.), 

or as a result of environmental exposure to a carcinogen.  Environmental exposure has 

been the source of regulatory attention because exposure can be controlled and is 

involuntary.  Risk assessment is a process in toxicology which helps determine what 

level of exposure is considered safe (BEST 2008).  Risk assessment contains 

fundamental elements which aids in the process including 1) hazard identification, 2) 

exposure assessment, 3) dose-response and 4) risk characterization.   

Hazard identification is the process of identifying potential toxic effects in humans 

that can occur at any dose.  Carcinogenicity hazards can be understood from a variety of 

assays; genotoxicity is one of the most common parameters measured.  Genotoxicity 

studies can be predictors of carcinogenicity and are based on the ability of the 

compound or its metabolites to interact with the DNA to cause mutations, or 

chromosomal aberrations (ICH 1996, 1997; USEPA 1986).  Even though genotoxicity is 

a precursor to carcinogenicity, not all carcinogens are genotoxic and not all genotoxic 

compounds are carcinogenic (Ames et al. 1993; Kim and Margolin 1999; Kirkland et al. 

2005; Kirkland et al. 2006; Zeiger et al. 1996).  Carcinogenicity can be secondary to 

nongenotoxic toxicity such oxidative stress or cellular proliferation (Klaunig et al. 2000).  

Also, there are many repair processes in the body that can prevent the formation of 

tumors from a genotoxic insult (Ames et al. 1993; Doak et al. 2007; Jenkins et al. 2005).  

Carcinogenicity studies can be performed in animals, typically for the lifespan of the 

animal (Haseman 2000).  Epidemiology studies in humans can determine if a compound 

is a known human carcinogen.  Typically, carcinogenicity and epidemiology studies are 
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very resource intensive.  Therefore in many cases the only carcinogenicity hazard that is 

known for a compound is its genotoxicity.   

Exposure assessment involves the quantification of exposure that a person might 

receive.  Trace levels of carcinogens may exist in the environment such as food, water, 

or air, but detection depends on the sensitivity of the analytical limit (Kroes et al. 2004).  

If levels observed in the environment are determined to be unacceptable from a 

toxicology perspective then strategies are developed to reduce the exposure (USEPA 

2000a).   

Dose-response assessment involves understanding the potential risks from 

available toxicology information (USEPA 2002).  Animal data is typically applied since 

controlled experiments with various doses are available.  The dose-response 

assessment for carcinogenicity depends on if the chemical exhibits a threshold (Clewell 

2005; Conolly 1995; USEPA 2005a).  Typically if the compound is a genotoxic 

carcinogen, then it is assumed to have no threshold (Barlow et al. 2006; USEPA 2005a).  

A threshold means that there is a dose where higher exposures have an effect and lower 

exposures do not. However if there is no threshold, then an effect can occur at any dose.  

Therefore, a linear extrapolation is performed from animal studies to determine the risk 

of developing cancer over background from chemical exposure.  By nature, there is a 

risk from any given exposure no matter how low.   

Risk characterization is the final step and involves comparing the dose-response 

assessment to exposure to determine the risk of developing cancer from the compound 

(USEPA 2000a).  Once this characterization is made, decisions are facilitated from the 

information provided.  Every effort is made to reduce exposure to as low as reasonably 

practicable (ALARP) (CHMP 2006).  Risk characterization allows organizations to make 

decisions and maximize their resources while ensuring safety.  Our goal was to provide 
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adequate methodology for risk characterization for mixtures and metabolites that have 

genotoxic potential. 

Assessing risk based on limited data - Threshold of toxicological concern 

Ideally, sufficient data are available to quantify risks with little uncertainty.  

Unfortunately, with the volume of chemicals and demand to limit animal testing toxicity 

testing for chemicals can be limited.  Nonetheless, risk assessment processes have 

been developed to evaluate compounds with limited data (Dourson 1996; Dourson et al. 

1996; Dourson and Stara 1983; Dybing et al. 2002; Fiori and Meyerhoff 2002; Kroes et 

al. 2005).  Typically the assessments are conservative to account for the uncertainties 

that exist in the data.  The threshold of toxicological concern (TTC) is typically applied to 

compounds were limited data exists for a molecule (Kroes et al. 2005; Kroes and 

Kozianowski 2002; Kroes et al. 2004; Renwick 2005).  The TTC can be derived based 

on structural information about the molecule or predictive toxicity tests such as cellular-

based assays.  While the TTC may be limited in its precision to predict risk, it is 

conservative and protects for uncertainty that exists with limited data.  While the TTC 

has been applied in many critical areas, there are still many areas in which it may add 

value (Blackburn et al. 2005; Dolan et al. 2005; Kroes et al. 2004; Müller et al. 2006). 

Specific Aim 1 

In many cases genotoxicity testing is only available to understand carcinogenic 

hazards of a compound.  The TTC is the current accepted methodology for analyzing the 

risk of a single genotoxic compound, but complexities exist with mixtures of genotoxic 

compounds.  The purpose of Aim 1 was to use the TTC to understand the total 

carcinogenic risk when exposed to a mixture of genotoxic compounds. 

TTC - Risk current approaches to genotoxic compounds 

The TTC has been applied by others when genotoxicity but not carcinogenicity is 

known about a compound (CHMP 2006; Kroes et al. 2004; Müller et al. 2006).  It was 
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developed from a database of known carcinogens (cancer potency database - CPDB) 

(Gold et al. 1999; Gold et al. 2005; Gold et al. 1984; Gold et al. 1991).  For each 

carcinogen there was an associative TD50 value, the dose at which 50% of animals 

remain tumor free over background when exposed over a lifetime (Peto et al. 1984; 

Sawyer et al. 1984).  In context, the TD50 is an effective measure of carcinogenic 

potency.  Based on an analysis of the CPDB, a TTC was developed, which represents a 

low probability of exceeding a negligible excess cancer risk (Kroes et al. 2004; Müller et 

al. 2006; Munro et al. 1999).   

Scientific gap - Limitations of the TTC approach for mixtures 

The TTC concept was developed to assess risk for exposure to an individual 

compound.  However, in the environment individuals are exposed to mixtures of 

compounds.  Currently there is no methodology available for assessing the risk of 

multiple genotoxic compounds.  This has been a scientific gap for pharmaceuticals 

where an individual can be exposed to multiple genotoxic impurities.  The regulatory 

guidance for genotoxic impurities in pharmaceutical products states that structural 

similarity is the critical for assessing the cancer risk (CHMP 2006).  The philosophy is 

that structurally similar compounds act similarly from a mechanistic perspective and 

therefore have a combined limit that does not exceed the TTC.  Structurally dissimilar 

compounds are thought to act through independent mechanisms, thus allowing for 

separate limits.  Although useful as a guidance, this conservative regulatory perspective 

is not based on a scientific method.  Therefore, research is needed to determine the 

cumulative cancer risk of multiple genotoxic compounds.  While this has been a 

particular concern for pharmaceuticals, this essentially impacts all applications of the 

TTC.  In Aim 1, we developed methodology for the TTC concept to be applied in a risk 

assessment framework for mixtures of genotoxic compounds. 
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Specific Aim 2 

Many chemicals are metabolized to genotoxic species.  Thus, elucidating the fate 

and risk for potentially genotoxic metabolites is critical to understanding the safety of a 

molecule.  While extensive methodology has been developed to understand metabolism, 

methods to assess the risk of metabolites with genotoxicity concerns is not well 

developed.  Assessing the risk of genotoxic metabolites is essential to understand the 

safety from exposure to the compound and its metabolite.  The purpose of Aim 2 was to 

develop methodology for understanding the carcinogenic risk following exposure to a 

genotoxic metabolite and the utility of current risk assessment methods, such as the 

TTC. 

Metabolism background 

Many foreign compounds when ingested undergo extensive biotransformation, 

yielding a variety of systemic metabolites.  Safety testing for a compound requires an 

understanding of the potential toxicity of these metabolites (Baillie et al. 2002; Luffer-

Atlas 2008; Smith and Obach 2006; USFDA 2008b).  There are many examples of 

carcinogens that require metabolism to genotoxic species in order to produce tumors 

(Ku et al. 2007).  Thus, differences in metabolism between species and individuals can 

affect the carcinogenicity of a compound.  This creates challenges when assessing the 

safety of a compound because its metabolic fate in humans can differ from the testing 

model.  Furthermore, this can be an issue from a population perspective where certain 

individuals could be sensitive to the exposure of a compound because of their unique 

metabolic enzymes.   

Scientific gap - No framework for risk assessment of genotoxic metabolites 

There have been efforts to develop a common framework to manage the safety 

of metabolites, especially in pharmaceuticals (Baillie et al. 2002; USFDA 2008b).  

Special considerations warrants the development of a framework for assessing the 
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safety of potentially genotoxic metabolites given that the importance of metabolism in 

carcinogenicity (Ku et al. 2007).  Furthermore, the ability of both in vitro and in vivo 

genotoxicity test systems to model human metabolism can be variable requiring careful 

scrutiny of these assays (Obach and Dobo 2008).  Despite the need for evaluating 

genetic safety of metabolites, no practical recommendations are available to address 

safety of identified human genotoxic metabolites.  Thus, the methods developed under 

Aim 2 will be a significant contribution to risk assessment methodology for xenobiotic 

metabolites. 

Developing the TTC for metabolites 

A working group which convened at the 4th International Workshop of 

Genotoxicity Tests (IWGT) acknowledged the need for a practical strategy to respond to 

documented human metabolite exposures and suggested that the TTC may be used to 

support a risk assessment approach for genotoxic human metabolites (Ku et al. 2007).  

However, the practical utility and quantification of risk has not been determined to test 

the hypothesis that the TTC is an appropriate endpoint.   

Metabolites are unique in that their systemic exposure in animals is typically 

measured and the risk to the parent may be better understood from exposure to the 

metabolite.  Systemic exposure to metabolites can differ between humans and animals 

due to species differences.  Therefore, a model may be developed that takes into 

account rates of metabolism in applying the TTC concept which would improve its 

application to risk assessment of genotoxic metabolites.  In Aim 2, we extended the TTC 

concept to metabolites by establishing a model based on human and animal exposure 

information. 

Specific Aim 3 

Since cancer is such a devastating disease and effects at low doses are 

unknown, conservatism is typically the default practice for carcinogens.  This leads to 
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regulations for exposure that have broad economic and human health consequences.  

The typical approach for a genotoxic carcinogen is to assume that the effect is linear and 

cancer can occur from even a small exposure (USEPA 2005a).  However, for 

nongenotoxic carcinogens there may be an opportunity to revise the assumption so that 

a threshold approach can be used in lieu of the more conservative assessment 

(Butterworth 2006; Melnick et al. 1996).  This assumption is important, because it means 

that one can raise the limit for nongenotoxic carcinogens several orders of magnitude.  

However, being nongenotoxic is not sufficient to use a less stringent approach, and one 

must show the existence of a threshold.  The purpose of Aim 3 was to develop 

methodology that can be used to determine a safe level for nongenotoxic carcinogens 

based on short-term toxicogenomic information. 

Establishing the threshold based on gene responses 

Determining dose-response at a gene transcription level is challenging given the 

high dimensionality of the data set; thus, dose-response analysis is typically performed 

at the whole-organism level.  Genomic analysis enriches our knowledge-base, however, 

because biological responses can be understood at a mechanistic level versus gross 

pathology.  Recent advancement in informatics, has allowed analysis of dose-response 

at a gene transcription level (Yang et al. 2007; Yu et al. 2006).  Genomic analysis of 

formaldehyde, allowed for a description of different toxicity-associated mechanisms and 

understanding dose-response for these mechanisms (Andersen et al. 2008; Thomas et 

al. 2007).  In Aim 3, we used transcript profiles to establish dose-responses at a gene 

level to better understand dose-dependence for nongenotoxic carcinogens. 

Mode of action - essential for establishment of a threshold for nongenotoxic carcinogens 

Under current regulatory guidance from the USEPA, a mode of action (MOA) has 

to be described for a compound so that a threshold can be demonstrated (USEPA 

2005a).  The MOA is a description of a sequence of events that results in the formation 
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of tumors in animals.  The MOA must have one or more key event(s), which is a 

biological precursor event that is necessary to cause cancer.  The MOA differs from 

mechanism which requires a more detailed understanding of the toxicity.  For example, 

for compounds that act as ligands for the peroxisome proliferator activator receptor 

(PPAR), the MOA is known to involve a key event which is induction of peroxisome 

proliferation (Yu et al. 2003).  Although the mechanism that leads from peroxisome 

proliferation to cell transformation and tumor induction are not known, knowledge that 

peroxisome proliferation is required has been sufficient to establish that drugs (fibrates) 

that are PPAR activators are rodent specific carcinogens (Klaunig et al. 2003) clearing 

the way for clinical application.  Unfortunately, when a MOA and key event cannot be 

identified, then the conservative linear approach is then applied as a default.  A key 

challenge for using a threshold approach for nongenotoxic carcinogens has been 

identifying these key events to allow a MOA argument to be applied.  Although detailed 

mechanistic analysis is not required per se, practically it is often a requirement using 

traditional toxicology studies so that a key event can be identified.   

Systems biology using microarray analysis provides a unique opportunity to 

analyze potential key events.  Ontologies such as Kegg pathways (Kanehisa and Goto 

2000; Kanehisa et al. 2006) or Gene Ontology (GO) (Ashburner et al. 2000) represent 

our knowledge of biological processes and pathways; therefore, analysis of these 

pathways (Dennis et al. 2003; Huang da et al. 2009) can reduce dimensionality of data 

and represent a majority of potential key events.  It is important to note that the USEPA, 

does not require all key events to be identified, just key event(s) that are linked to a 

dose-response and establish a threshold (USEPA 2005a).  Therefore, in Aim 3, we 

established methods to analyze potential key events using standard ontologies and 

linked them with potential thresholds using dose-response methodology. 
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Overall Risk Assessment Framework 

 Although the Specific Aims deal with different aspects of risk assessment for 

carcinogens, e.g. genotoxic vs. nongenotoxic agents and single agents vs. mixtures, 

they are interconnected as part of an overall decision framework designed to advance 

cancer risk assessment.  Figure 1 demonstrates the current carcinogenicity risk 

assessment framework with gaps addressed by the three Specific Aims.  If a compound 

lacks carcinogenicity information, then genotoxicity data for the compound are used to 

assess risk.  For nongenotoxic compounds without carcinogenicity information, no 

carcinogenicity risk assessment is required.  The TTC is typically applied for genotoxic 

compounds.  If there is a mixture of genotoxic compounds, then an additive limit is 

applied for structurally similar compounds while separate limits are applied for dissimilar 

compounds.  There are limitations to this approach mainly because the TTC is a 

conservative default that can be overly restrictive in some cases and the mixtures 

assessment is based on judgement and not science.  The focus of Aim 1 was to improve 

upon these limitations. 

 If there is carcinogenicity data available and the compound is not carcinogenic, 

genotoxic metabolites may also be considered.  Exposure to the genotoxic metabolite 

must be high enough in animals for the bioassay to be an adequate model for 

tumorigenicity assessment, or exposure in humans must be negligible.  If no genotoxic 

metabolites are identified, then no carcinogenicity risk assessment is required.  

However, if a metabolite is genotoxic or is predicted to be genotoxic, there is currently no 

methodology to assess the risk of identified genotoxic metabolites.  Aim 2 provided an 

overall framework for understanding the risk of genotoxic metabolites using results from 

the cancer bioassay and exposure in humans.  For genotoxic carcinogens, it is assumed 

that there is no threshold and linear low-dose extrapolations are applied.   
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Under current guidelines, risk assessment for nongenotoxic carcinogens may 

allow for a less conservative approach; however, a threshold-based MOA must be 

identified.  The current methodology for identifying a threshold is limited and depends in 

large part on the ability to identify ‘key events’ linked to the mechanism of 

carcinogenesis.  Determining mechanism is difficult and time consuming.  In Aim 3, a 

toxicogenomic approach is described that advances the methodology by facilitating the 

identification of key events and establishing a threshold-based MOA. 

 In order to perform an adequate risk assessment for any agent, the decisions 

outlined in Figure 1 must be considered.  Gaps in knowledge are as highlighted in 

Figure 1 will be addressed using computational methods.  Each Specific Aim outlined in 

the thesis is crtical for developing methodology for an overall risk assessment 

framework.  Therefore, all of the Aims are interdependent; if one part of the framework 

fails, then the overall framework fails to correctly characterize risk.  The focus for each 

Aim was to improve a part of the framework where critical technical gaps were identified.  

As each part of the framework is strengthened, the uncertainties surrounding cancer risk 

assessment is reduced. 

Reliable methods for risk assessment are critical to public health 

Chemicals have benefit within society, but the use of chemicals such as drugs or 

agricultural products are also associated with risks.  Toxicology risk assessment, allows 

for the understanding of risks following exposure to a chemical.  Given the risk/benefit 

equation, it is important that risk assessment strive to be as accurate as possible.  If the 

assessment is too conservative from overestimation of risk, then resources are spent on 

action plans that would not significantly improve public health; thus expending resources 

which could be better used in other areas.  However, if the assessment underestimates 

the risk, then decisions are made that can compromise safety.  The reality is that 

decisions are made even when toxicology data is missing.  In this proposal we will 
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develop methods for cancer risk assessment that can be used to improve its accuracy 

even for incomplete datasets.  Some critical gaps exist for mixtures of genotoxic 

compounds, genotoxic metabolites, and nongenotoxic carcinogens.  Therefore, the 

focus was to improve upon these methodologies and build upon the current risk 

assessment strategies for carcinogens. 
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Figures 

 

Figure 1.  Overall framework for cancer risk assessment and gaps addressed by Specific 
Aims.  Gaps in current methodology are shown in circles with the Specific Aim designed 
to address that gap noted. 
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IN SILICO APPROACHES TO PREDICTING CANCER POTENCY FOR RISK 

ASSESSMENT OF GENOTOXIC IMPURITIES IN DRUG SUBSTANCES1 

Abstract 

The current risk assessment approach for addressing the safety of very small 

concentrations of genotoxic impurities (GTIs) in drug substances is the threshold of 

toxicological concern (TTC).  The TTC is based on several conservative assumptions 

because of the uncertainty associated with deriving an excess cancer risk when no 

carcinogenicity data are available for the impurity.  It is a default approach derived from 

a distribution of carcinogens and does not take into account the properties of a specific 

chemical.  The purpose of the study was to use in silico tools to predict the cancer 

potency (TD50) of a compound based on its structure.  Structure activity relationship 

(SAR) models (classification / regression) were developed from the carcinogenicity 

potency database using MultiCASE and VISDOM.  The MultiCASE classification models 

allowed the prediction of carcinogenic potency class, while the VISDOM regression 

models predicted a numerical TD50.  A step-wise approach is proposed to calculate 

predicted numerical TD50 values for compounds categorized as not potent.  This 

approach for non-potent compounds can be used to establish safe levels greater than 

the TTC for genotoxic impurities in a drug substance.  

Introduction 

Control of impurities is an important part of the drug manufacturing process as it 

improves quality and minimizes safety risks.  The ICH Q3A(R2) and Q3B(R2) guidances 

recommend limits for reporting, identifying and qualifying drug substance and drug 

product impurities (ICH 2006a, b).  The guidance recognizes that lower limits may be 

appropriate for impurities considered unusually toxic.  Recent guidances exist for a 

                                                 
1 This chapter has been published previously in:  Bercu JP, Morton SM, Deahl JT, Gombar VK, 
Callis CM, and van Lier RBL. (2010). In silico approaches to predicting cancer potency for risk 
assessment of genotoxic impurities in drug substances. Regul. Toxicol. Pharmacol. (In Press). 
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special class of toxic impurities, which are considered genotoxic (CHMP 2006; USFDA 

2008a).  An impurity may be classified as genotoxic if it is positive in the Ames 

mutagenicity assay or predicted to be positive in the assay based on structure (Dobo et 

al. 2006).  The presumption for genotoxic impurities (GTIs) is that they are also 

carcinogens with no threshold unless proven otherwise (Barlow et al. 2006; CHMP 2006; 

USEPA 2005a).   

The level of a GTI must be as low as reasonably practicable (ALARP) and below 

a limit considered toxicologically acceptable.  The current risk assessment paradigm for 

addressing the safety of GTIs, with unknown carcinogenic potency, is the threshold of 

toxicological concern (TTC) (Kroes et al. 2004; Müller et al. 2006).  The TTC is a dose at 

which there is a high probability of being below a negligible excess cancer risk (Kroes et 

al. 2004; Munro et al. 1999).  The accepted negligible cancer risk for GTIs in human 

pharmaceuticals of 1 in 100,000 is associated with an exposure of 1.5 µg/day (CHMP 

2006; USFDA 2008a).  The TTC was developed from a database of rodent carcinogens 

with TD50 values as the measures of carcinogenic potency (Gold et al. 1999; Gold et al. 

2005; Gold et al. 1984; Gold et al. 1991; Gold et al. 1992).  The TD50 is defined as the 

daily dose in mg/kg/day at which there is a fifty percent probability of developing tumors 

over background (Peto et al. 1984; Sawyer et al. 1984). 

The TTC is based on several conservative assumptions outlined previously 

because of the uncertainty of estimating a cancer potency value from sparse data 

(Delaney 2007; Humfrey 2007; Krewski et al. 1990).  Delaney (2007) theorized that a 

higher threshold than the TTC likely exists for compounds used in the synthesis of a 

drug substance because their structures are not part of the “potent class” (Delaney 

2007).  However, there are no known methods to determine purely on structure whether 

a compound would be of higher carcinogenic potency. 
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In silico models have been shown to be effective in predicting a number of toxic 

endpoints such as potential genotoxicity or carcinogenicity (Hayashi et al. 2005; 

Matthews and Contrera 1998, 2007; Matthews et al. 2006b; Mayer et al. 2008; Votano et 

al. 2004; White et al. 2003).  There have been some recent efforts to develop a 

quantitative structure activity relationship (QSAR) of cancer potency using toxicity 

estimates and chemical properties (Venkatapathy et al. 2009).  The toxicity estimates 

and chemical properties were either experimentally derived or computed.  Limited 

predictivity was observed for a single estimate, with an improvement occurring after 

applying classification and a regression tree (Venkatapathy et al. 2009). 

In many cases, risk assessment of an impurity is based only on its structure and 

limited experimental data (e.g. Ames bacterial mutation assay results).  Therefore, the 

typical risk assessment approach defaults to the TTC.  However, a recent draft guidance 

developed by the USFDA for GTIs allows for higher levels than the default TTC.  The 

guidance suggests calculating cancer risk based on carcinogenic potency from a 

structurally similar known carcinogen (USFDA 2008a) and adopting that calculation for 

the GTI limit.  This offers an opportunity to employ in silico models to predict 

carcinogenic potency (TD50) solely from the chemical structure and provide a more 

robust risk assessment. 

The purpose of this study was to utilize in silico methodologies for predicting the 

carcinogenic potency to improve the risk assessment of GTIs.  This approach may 

provide the opportunity to make more practical decisions surrounding GTIs versus 

default assumptions, and ultimately, enhance the drug manufacturing process. 

Methods 

Two software tools were applied to derive cancer potency predictions.  The first 

was MultiCASE from MultiCASE, Inc. (www.MultiCASE.com) and the other was an in-

house package, VISDOM.  MultiCASE, also called MC4PC (v.2.1) for use with MS 
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Windows software, is a machine-learning application that has been validated and used 

by the USFDA (http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm092125.htm) 

for prediction of toxicity (Benz 2007; Matthews and Contrera 2007; Matthews et al. 2008; 

Matthews et al. 2009).  MultiCASE breaks down all input chemical structures into non-

cyclic fragments of two to ten atoms.  The experimental toxicity value (TD50 in this case) 

of a compound is translated into “CASE units” ranging from 10 to 90 and compounds are 

categorized into three classes based on the assigned “CASE units”.  Compounds with 

CASE units between 10 and 19 are labeled inactive (or non-toxic), compounds with 

CASE units between 30 and 90 are called active (or toxic), and compounds with CASE 

units between 20 and 29 are grouped as “Marginal” (Gombar et al. 2007; Klopman 1984, 

1992).  Based on the label assigned to each compound, all fragments of that compound 

are tagged with that label.  The probability of association between each fragment and 

the activity class is then established.  The fragments that have statistically significant 

association with the “active” class are called “biophores” and fragments that have 

statistically significant association with the “inactive” class are called “biophobes”.  

Depending on the biophores and/or biophobes present in a molecule, MultiCASE 

computes the probability of the molecule being associated with the active class.  When a 

molecule is predicted to be active, MultiCASE also calculates a quantitative value of 

activity in CASE units.  

VISDOM is an in-house package developed for deployment of predictive models 

at Eli Lilly and Company (Gombar and Zhang 2007).  The model development 

techniques of VISDOM are similar to those in the commercial toxicity prediction system, 

TOPKAT (Gombar and Enslein 1995).  Along with a TD50 value, the model predicts a 

95% confidence interval around the prediction and a number of diagnostic measures to 

assess the reliability of the prediction.  As in TOPKAT, VISDOM also has a reverse 
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QSAR (rQSAR) functionality to quantify the contribution of every non-hydrogen atom into 

the predicted TD50 value.  

The TD50 predictor installed in VISDOM is a multiple linear regression QSAR 

model.  The model employs information-rich structure quantifiers expressing 

electrotopological state (ES) values (Hall et al. 1991).  ES values are computed on the 

constituent isolated and bonded hydrides in a molecule (Gombar et al. 2004).  The sum 

of atomic ES values is used as a measure of molecular bulk.  The ability of a molecule to 

form inter- and intra-molecular hydrogen bonds was quantified by the sum of ES values 

on hydrogen bond acceptors and donors (Lipinski 2000).  ES descriptors simultaneously 

capture information about the arrangement and accessibility of electrons.  Simply put, 

the ES of an atom is context-specific state and is computed from the number of sigma, 

pi, and lone pair electrons, and the number of bonded hydrogens, with the context 

specificity being derived from the number and arrangement of other atoms in the 

molecule. 

Data Set 

This modeling effort was focused on categorizing and estimating the potential 

cancer potency of individual organic compounds.  The TD50 data used for the present 

work were extracted from the carcinogenicity potency database (CPDB) 

(http://potency.berkeley.edu/).  From a total of 1515 compounds downloaded, a set of 

694 was retained; noncarcinogenic compounds, mixtures, inorganics, and structural 

duplicates were removed from the dataset.  Each TD50 in mg/kg/day was converted to a 

pTD50 for data normalization by Equation 1. 











WeightMolecular  x 1000
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log-  TD

50
50p

 (1) 



20 
 

Dividing by molecular weight transforms the cancer potency value on a molar basis.  

Histograms indicate that the pTD50 datasets were normally distributed, an advantage for 

statistical analyses, while the TD50 datasets were skewed (Figure 1).   

Separate datasets contained TD50s of rats and mice.  The most potent TD50 from 

all target organ sites was developed for each species.  If more than one TD50 was 

developed for an organ site and species, then the harmonic mean of the TD50s was 

applied.  This is consistent with the approaches used to develop the CPDB 

(http://potency.berkeley.edu/td50harmonicmean.html). 

 TD50 values were categorized as potent or not potent, or as falling in between 

these two categories and considered to be indeterminate.  The criteria for the potent 

category was selected to be consistent with the value associated with the TTC for 

genotoxic compounds, an exposure value of 1.5 µg/day for a 70 kg person (Müller et al. 

2006). This 1.5 µg/day value, representing an excess cancer risk of 10-5, was linearly 

extrapolated to a TD50 value of 1 mg/kg/day and associated with a pTD50 of 4.53, the 

lower bound for all molecular weights in the set of compounds with TD50 values ≤ 1 

mg/kg/day.  So pTD50 values ≥ 4.53 were considered to be potent.  In order to clearly 

separate the potent and not potent categories, the not potent category was selected to 

start at a TD50 level ten times higher than the potent category.  The TD50 values for the 

not potent category were ≥ 10 mg/kg/day.  The TD50 value of 10 mg/kg/day was 

associated with a pTD50 of 3.75, the lower bound for all molecular weights in the set of 

compounds with TD50 values ≥ 10 mg/kg/day.  The distribution of the carcinogenicity 

data is shown in Table 1.  Since the pTD50 cutoff was based on the lower bound for all 

molecular weights, many compounds that would have been categorized as not potent 

using TD50s were labeled potent using pTD50s.  This reflects conservatism in the model 

because more compounds were labeled to be potent than exist below the TTC, which 

was derived from TD50s.  A TD50 prediction from MultiCASE or VISDOM was considered 
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invalid when either the prediction diagnostic failed, or if MultiCASE had a “Marginal” 

prediction as defined by its diagnostics. 

Results 

Model Development 

Having observed differences in carcinogenic potency of compounds in rats and 

mice, the data set was separated to develop species-specific TD50 predictors.  In order 

to test our TD50 models, 10% of the compounds were evenly selected from the TD50, 

potency-ordered data for both rat and mouse and set aside as test sets.  The training set 

consisted of the rest (90%) of the compounds.  In order to provide accurate structural 

characterization for each compound in the model, canonical SMILES were coded for 

each chemical from PubChem (http://pubchem.ncbi.nlm.nih.gov/).  MultiCASE and 

VISDOM models were developed using the training set data.   

Both MultiCASE and VISDOM models were developed to minimize the effects of 

over-fitted models, inclusion of model-influencing compounds and observation-sensitive 

variables, and use of redundant and highly correlated descriptors.  The quality and 

robustness of the models were determined through statistical parameters such as 

sensitivity, specificity, concordance, applicability, positive prediction value (PPV), and 

negative prediction value (NPV) in both resubstitution and cross-validation tests.   

A consensus prediction approach was applied to the predictions of both 

MultiCASE and VISDOM models.  There were several rules applied to the consensus 

model.  If either model predicted the TD50 to be potent then the consensus was potent.  

If both models predicted the TD50 to be not potent then the consensus was not potent.  If 

either model could not make a prediction then the result was defaulted to the result of 

the other model.  Finally, if both models could not make a prediction, the consensus 

model result was removed from the analysis. 
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Additionally, since VISDOM provided a numerical prediction of a pTD50, statistics 

such as R2 and adjusted R2 determined the model’s fit and Q2 determined the model’s 

performance in cross-validation and test sets (Golbraikh and Tropsha 2002).  R2 and Q2 

calculations were performed using JMP (v 6.0, SAS Institute).  These predicted pTD50 

values were then converted back to TD50s for the practical applications in risk 

assessment.  

Validation 

The validation statistics indicate that the models developed were conservative in 

that compounds are predicted potent more often than not (Table 2).  Overall, excluding 

the indeterminate compounds from the test set resulted in improved statistics, especially 

sensitivity, which is the percent of experimentally potent compounds, predicted to be 

potent.  When excluding test set indeterminate compounds, sensitivity of each model 

was relatively high: 94% (MultiCASE-Rat), 86% (MultiCASE-Mouse), 85% (VISDOM-

Rat), 60% (VISDOM Mouse), 86% (Consensus-Rat) and 88% (Consensus-Mouse).  The 

specificity, which is the percent of experimentally not potent compounds predicted to be 

not potent, was not as high in some areas as sensitivity reflecting the intended 

conservatism of the model where in some instances there were not potent compounds 

predicted potent.  There was a high overall specificity in mouse models (81% 

MultiCASE, 100% VISDOM, and 85% Consensus) and individually the rat models were 

low (50% MultiCASE, 44% VISDOM, and 36% Consensus).  Concordance was high in 

each rat and mouse model (68-90%), even with the low specificity.  The amount of 

confident predictions improved with the consensus models (63-70% applicability versus 

43-58% for the individual models).  The explanation is that in some instances one model 

could make a prediction for a compound when the other was not confident. 

Table 3 shows the model fit and resubstitution statistics for the VISDOM rat and 

mouse models.  Essentially the models developed were robust with R2 values ranging 
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from 0.66-0.79.  This table indicates that the ability to predict precise values was better 

in the mouse model (Q2
 = 0.60) than the rat model (Q2 = 0.34).   

Following conversion back from the pTD50, each predicted TD50 was divided by 

the experimental TD50.  Therefore, higher numbers represent the undesirable situations 

(non-conservative) when the numerical VISDOM prediction was less potent than the 

experimental value.  Table 4 represents the percent of compounds where the ratio was 

less than or equal to 1, 2, 5, and 10-fold the experimental result.  A majority of 

compounds (rat: 86%; mouse:88%) had VISDOM TD50 predictions that were ≤ 5-fold the 

experimental value.  In addition, it was rare for VISDOM TD50s to exceed 10-fold the 

original value, with 86% or 97% less than or equal to 10-fold the experimental values.  

Out of the four compounds that were greater than 10-fold from the original prediction, 

two were predicted to be potent by MultiCASE and the other two predictions from 

MultiCASE were not considered confident enough to make a prediction (Table 5).  

Ochratoxin A was one of the compounds that had a TD50 value that was far more potent 

(956x) than predicted.  Mycotoxins have complex structures that are difficult to 

accurately predict using in silico models.  Cyanazine was also predicted to be less 

potent for reasons that are unclear, but the ratio of predicted TD50 over experimental 

TD50 (17x) was not as high the ratio for Ochratoxin A.  Thus, while there may be some 

limitations for precisely predicting the pTD50, the predictions are appropriately 

conservative, and an underestimation of risk is unlikely.  Also, the use of multiple models 

can provide extra protection if one model underestimated risk (Matthews et al. 2008).   

Decision Tree 

Based on the results of the analysis, a proposed decision tree was developed 

(Figure 2).  If the impurity is not determined to be genotoxic, then normal ICH Q3A / Q3B 

guidelines for impurities should be followed (ICH 2006a, b).  However if genotoxicity is 

determined, then these models would be helpful for developing a safe limit.  If the 
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prediction is potent in one model (either MultiCASE / VISDOM rat and mouse models) or 

no prediction can be made with either model, then the default TTC approach is applied.  

If the prediction is instead not potent in all models where confident predictions are made, 

then a numerical estimate is made using VISDOM.  The highest calculated pTD50 from 

either species is selected to determine the risk specific dose (RSD).  The pTD50 is 

converted back to the TD50.  The RSD is developed from the TD50 using linear-low dose 

extrapolation and assuming a 1 in 100,000 excess cancer risk.  RSD is determined from 

the TD50 by Equation 2.   

mg

g 1000
 x kg 70 x 

0.5

0.00001 x )(mg/kg/day TD
  g/day)( RSD

50  







 (2) 

Case Study 

Figure 3 represents a case study using the models developed in the study.  

Isopropyl chloride is an alkyl halide that is positive in the Ames assay.  No 

carcinogenicity study has been published for isopropyl chloride to develop a risk 

estimate.  The chronic limit using the default TTC approach is 1.5 µg/day.  Both VISDOM 

and MultiCASE predicted that isopropyl chloride was not a potent carcinogen.  The 

highest pTD50 from both species was 3.47.  This converts to a TD50 of 26.1 mg/kg/day 

resulting in an RSD of 37 µg/day.  Assuming a 1 g drug substance/day dose, a limit of 37 

ppm was developed.  In comparison, the default TTC resulted in a limit of 1.5 ppm. 

Control of short-term exposure to GTIs during clinical trials is a recent 

development in regulatory guidances, allowing for higher daily exposures during clinical 

trials (CHMP 2008A; USFDA 2008a).  This has been coined as the “Staged-TTC”, which 

takes into consideration that lifetime exposure can be redistributed over shorter 

durations.  The Staged-TTC uses more conservative assumptions based on the patient 

population which is a lower excess cancer risk level (1 in 1 million) and a 2-fold reduction 

in dose based on uncertainties from this linear redistribution of lifetime exposure.  The 
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same assumptions for the Staged-TTC would still apply for the RSD during clinical trials.  

Table 6 shows a new staged-approach for isopropyl chloride using the new RSD 

compared to the defaulted Staged-TTC.  The new staged-approach for isopropyl 

chloride takes into account similar assumptions as the Staged-TTC.  The Staged-TTC 

doses following an in silico assessment are 25-times greater than the defaulted values, 

allowing limits for clinical trial manufacturing that more realistically represents the 

predicted potency of the compound.  Although a high daily exposure would be 

considered acceptable, the ALARP principle and other regulatory guidelines (i.e. ICH 

Q3A or Q3B) would probably restrict exposures for short-duration use of clinical material 

(CHMP 2006; ICH 2006a, b). 

Discussion 

The resulting in silico model is an extension of the current EMEA and USFDA 

(draft) guidances in that it develops an effective prediction of a TD50, which is an 

estimate of carcinogenic potency in lieu of defaulting to the conservative TTC (CHMP 

2006; USFDA 2008a).  The difficulty of extrapolating risk using the TTC is that it 

assumes an impurity with limited data is a potent carcinogen (Kroes et al. 2004).  

However, predicting carcinogenic potency can provide a better estimate of risk and allow 

for a more realistic estimate of acceptable exposure.   

The USFDA draft document states “…the conduct of an SAR evaluation of an 

impurity may provide useful information.  When a significant structural similarity to a 

known carcinogen is identified, the drug substance and drug product acceptance criteria 

(typically in units of parts per million or percent) can be set at a level that is 

commensurate with the risk assessment specific to that of the known compound 

(USFDA 2008a).”  This approach is an expansion of the guidance by providing an in 

silico approach for estimating carcinogenic risk from a database of carcinogens.  It is 

less dependent on selecting a “model carcinogen” because seemingly similar 
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carcinogens may have vastly different potencies.  In the case of isopropyl chloride, there 

are a number of alkyl halides (e.g. ethyl chloride, 1,2-dichloropropane, etc.) that have 

carcinogenicity data and selecting the most similar compound based on expected 

biological effects would be difficult.  There are also other scientific advantages that 

computerized models can provide such as machine learning, or taking into account the 

chemical reactivity of the molecule where visual inspection of the structure may miss 

these effects.   

What is also important to highlight is that there are limitations to the model and it 

normally errors on the conservative side.  This is indicated by the high sensitivity and low 

specificity in some cases.  In other words, it is likely that a GTI will be flagged as potent, 

when it is not potent (false positive).  Excluding the experimentally indeterminate range 

for VISDOM dramatically improved its sensitivity, so the decision tree considered 

indeterminate predictions as inadequate predictions.  Regression analysis is useful for 

quantifying the TD50 of impurities predicted to be not potent.  It is possible that a few 

dramatic missed predictions resulted in the low Q2 for rats in the VISDOM model.  The 

predictions were normally conservative, with the majority of predictions ≤ 5-fold from the 

actual carcinogenic potency.  VISDOM predicted some of the compounds in the test set 

to be far less potent than experimentally derived results, but MultiCASE was normally 

able to correctly identify that those compounds were potent.  However, Ochratoxin A 

was far more potent than predicted by VISDOM, and MultiCASE did not identify it as 

potent.  Ochratoxin A is representative of a class of structurally complex compounds 

(mycotoxins) that is likely to result in misclassifications. 

The case study and decision tree are intended as a guide to show how the in 

silico model can be used in practice for GTIs.  The decision tree or process for applying 

the information may differ from organization to organization, but the principles of risk 

assessment and in silico modeling should stay fairly consistent.   
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The in silico analysis of isopropyl chloride, an Ames positive compound, 

predicted the compound to be of lower carcinogenic potency.  This resulted in a higher 

acceptable daily intake when compared to the TTC for both chronic and short-term (e.g. 

clinical trial) exposures.  However, while this risk assessment may be considered 

appropriate for carcinogenicity, there may be non-carcinogenic effects that should also 

be considered.  The non-carcinogenic effect levels will be unknown for many GTIs, 

which is no different than many nongenotoxic impurities.  Therefore, it is important that 

even though higher acceptable daily intakes may be allowed, the ICH Q3A / Q3B 

guidelines should be followed, which provide a framework for qualification of impurities 

(ICH 2006a, b).  

We recognize that the use of in silico models to predict carcinogenic potency has 

applicability beyond the pharmaceutical GTIs.  Benfenati et al. (2009) indicated the need 

for the prediction of carcinogenic potency in the food industry, especially for inadvertent 

or accidental presence of a chemical in products (Benfenati et al. 2009).  As the 

application of the TTC continues to grow (e.g. food, pharmaceuticals, personal care 

products, etc.) so does the need to improve the accuracy of the risk assessment instead 

of assuming the worst-case (Blackburn et al. 2005; Humfrey 2007; Kroes and 

Kozianowski 2002; Kroes et al. 2004).  

In conclusion, while in silico models have been effective for predicting threshold 

toxicity endpoints, this report shows the utility of in silico models in a step-wise approach 

for prediction of carcinogenic potency of GTIs as applied to pharmaceutical products.  

This approach can provide a more realistic estimate of cancer potency for GTIs rather 

than relying only on a single conservative estimation such as the TTC.  While the 

approach has limitations, it was developed to be normally conservative to ensure drug 

safety and quality.   
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Tables 

Table 1.  Distribution of carcinogenicity data. 
 Total Potent (pTD50 ≥ 4.53) 

Species 

Compounds  
(Training Set / Testing 

Set) Training Testing 

Rat 511 (460 / 51) 186 (40%) 25 (49%) 
Mouse 402 (362 / 40) 74 (20%) 8 (20%) 

 
Data retrieved from the Carcinogenic Potency Database (http://potency.berkeley.edu/).  
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Table 2.  Validation statistics for the MultiCASE and VISDOM models.  Indeterminate 
values were excluded and included from the test set. 

Confident calls only, excluding indeterminate compounds 
 MultiCASE VISDOM Consensus 
 Rat Mouse Rat Mouse Rat Mouse 

Sensitivity 94% 86% 85% 60% 86% 88% 
Specificity 50% 81% 44% 100% 36% 85% 

Concordance 80% 83% 68% 90% 69% 86% 
Applicability 49% 58% 43% 53% 63% 70% 

PPV 80% 67% 69% 100% 72% 70% 
NPV 80% 93% 67% 89% 57% 94% 

 
All calls, including indeterminate compounds 

 MultiCASE VISDOM Consensus 
 Rat Mouse Rat Mouse Rat Mouse 

Sensitivity 69% 50% 81% 45% 71% 53% 
Specificity 62% 74% 42% 100% 40% 75% 

Concordance 67% 65% 69% 81% 62% 67% 
Applicability 88% 93% 76% 78% 98% 98% 

PPV 81% 54% 76% 100% 74% 57% 
NPV 44% 71% 50% 77% 38% 72% 

 
* Validation Parameters. 
 
Sensitivity:  The proportion of compounds correctly predicted to be potent relative to all 
compounds experimentally determined to be potent. 
 
Specificity:  The proportion of compounds correctly predicted to be not potent relative to 
all compounds experimentally determined not to be potent. 
 
Concordance:  The proportion of compounds correctly predicted to be potent and not 
potent relative to total number of predictions. 
 
Applicability:  Total predictions vs. total compounds tested. 
 
Positive prediction value (PPV):  The proportion of compounds correctly predicted to be 
potent relative to all predictions categorized as potent. 
 
Negative prediction value (NPV):  The proportion of compounds correctly predicted to be 
not potent relative to all predictions categorized as not potent. 
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Table 3.  The model fit and resubstitution statistics for VISDOM. 
Model R2 R2 adjusted Q2 

Mouse  0.655 0.618 0.615 
Rat  0.790 0.750 0.335 

 
R2 - Correlation coefficient for training set and predictions of the training set pTD50s. 
 
R2 adjusted - Adjusts the R2 for the number explanatory terms in the model. 
 
Q2 - Correlation coefficient for test set and predictions of the test set pTD50s. 
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Table 4.  Percentage of compounds where the ratio was less than or equal to 1, 2, 5, 
and 10-fold from the experimental compound. 

 VISDOM Percent of Compounds ≤Ratio 
(Predicted TD50 / Experimental TD50) 

Species ≤ 1-fold ≤ 2-fold ≤ 5-fold ≤ 10-fold 
Rat 59% 64% 86% 86% 
Mouse 66% 81% 88% 97% 
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Table 5.  MultiCASE predictions for compounds where the VISDOM prediction of TD50 
was greater than 10-fold higher than the experimental value. 

Compound Model Ratio = PredTD50 / ExpTD50 MultiCASE 
Prediction 

Cyanazine Rat 17.5 = 110.4 mg/kg / 6.3 mg/kg NA 
Ochratoxin A Rat 956 = 133.9 mg/kg / 0.14 

mg/kg 
NA 

N-
Nitrosoethylurethane 

Rat 24= 2.14 mg/kg / 0.09 mg/kg Potent 

Chlorambucil Mouse 586 = 76.2 m/kg / 0.13 mg/kg Potent 
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Table 6.  Daily Dose of Staged-TTC for Isopropyl Chloride Based on Defaulted 
Guidelines Versus In Silico Prediction. 

Approach 
 

Single 
Dose 

≤ 1 
month 

≤ 3 
months 

≤ 6 
months 

≤ 12 
months 

Defaulted Staged-
TTC 
(µg/day)a 

120 µg 60 µg 20 µg 10 µg 5 µg 

In Silico Staged-
TTC 
(µg/day)b,c 

3,151 µg 1,576 µg 525 µg 263 µg 131 µg 

 
a.  Defaulted Staged-TTC values based on EMEA CHMP Q&A (2008). 
 
b.  Lifetime exposure at a 1 in 1 million excess cancer risk is 94.5 mg/lifetime (3.7 µg/day 
x 365 days x 70 years) for the in silico prediction of isopropyl chloride.  Calculations were 
modeled after the EMEA’s defaulted Staged-TTC (with assumptions such as 2x 
reduction for uncertainties with linear adjustment of dose during short-term exposure).  
In comparison, lifetime exposure to the defaulted TTC is 3.8 mg/lifetime (0.15 µg/day x 
365 days x 70 years). 
 
c.  ICH Q3A and Q3B limits must also be followed and would probably restrict actual 
exposure levels. 
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Figures 

 
Figure 1.  Distribution of the TD50 and pTD50 data for both rats and mice demonstrating 
the advantages of the data transformation. 
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Figure 2.  Proposed decision tree. 
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Figure 3.  Case study using the models developed in the study. 
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QUANTITATIVE ASSESSMENT OF CUMULATIVE CARCINOGENIC RISK FOR 

MULTIPLE GENOTOXIC IMPURITIES IN A NEW DRUG SUBSTANCE1 

Abstract 

 In pharmaceutical development, significant effort is made to minimize the 

carcinogenic potential of new drug substances (NDS).  This involves appropriate 

genotoxicity and carcinogenicity testing of the NDS, and understanding the genotoxic 

potential of its impurities.  Current available guidance recommends the use of the 

threshold of toxicological concern (TTC) for a single impurity where mutagenicity but no 

carcinogenicity information exists.  Despite best efforts, the presence of more than one 

genotoxic impurity in an NDS may occur at trace levels.  This paper repeats the analysis 

performed by others for a single genotoxic compound, but also uses statistical 

simulations to assess the impact on cancer risk for a mixture of genotoxic compounds.  

In summary, with the addition of multiple impurities all controlled to the TTC, an increase 

in cancer risk was observed.  This increase is relatively small when considering the 

conservative assumptions of the TTC.  If structurally similar compounds had an 

assumed strong correlation (±10 fold from the first randomly selected impurity) in cancer 

potency, the resulting cancer risk was not negatively impacted.  Findings based on 

probabilistic analysis here can be very useful in making appropriate decisions about risk 

management of multiple genotoxic impurities measured in the final drug substance. 

Introduction 

New drug substances (NDSs) are extensively tested in toxicology studies before 

they enter the market.  These tests can identify the risks associated with an NDS such 

as mutagenic, reproductive, nonneoplastic, and carcinogenic effects.  A battery of 

genotoxicity tests is designed to detect damage to the DNA either through direct or 

                                                 
1 This chapter has been published previously in:  Bercu JP, Hoffman WP, Lee C, and Ness DK. 
(2008). Quantitative assessment of cumulative carcinogenic risk for multiple genotoxic impurities 
in a new drug substance. Regul. Toxicol. Pharmacol. 51, 270-7. 
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indirect mechanisms (ICH 1997a).  If the compound is intended for chronic use, then a 

bioassay is performed on the compound to determine its carcinogenic potential (ICH 

1997b). 

Also tested along with the NDS are its impurities.  Although these impurities may 

only exist at low levels, they are still evaluated for their potential toxicity (ICH 2006a).  

For impurities with unknown toxicity, nonclinical safety tests for the NDS can be used to 

qualify the impurities.  It may be necessary to keep these impurities at lower levels for 

compounds that are considered “unusually toxic”. 

It is assumed that the toxicity of genotoxic carcinogens has no threshold, 

requiring lower impurity limits than noncarcinogens (Barlow et al. 2006; USEPA 2005a).  

Tools such as in silico models, structure activity analysis, or genotoxicity tests can 

provide predictions of carcinogenicity for impurities without the cost or expense of a 2-

year bioassay (Dobo et al. 2006; Hayashi et al. 2005; Matthews et al. 2006b).  Efforts 

are made to remove genotoxic impurities from the synthesis of a molecule, but in some 

instances it is not technically feasible.  If it is known that there is a potential for a 

genotoxic impurity, then the chemical process is designed to remove the impurity to a 

safe level.  Furthermore, analytical chemistry confirms the process is efficient in 

removing genotoxic impurities (Argentine et al. 2007).   

Safety evaluations are available for a genotoxic impurity with no carcinogenicity 

information.  Since carcinogenic risk cannot be estimated with suitable precision or 

accuracy, the threshold of toxicological concern (TTC) has been applied to impurities 

where mutagenicity but not carcinogenicity is known about the impurity (Müller et al. 

2006).  This approach is similar to what has been applied to impurities in food (Kroes et 

al. 2000; Kroes et al. 2004; Munro et al. 1999).  The TTC is the highest dose (µg/day) at 

which, with a high probability, the resulting increase in cancer risk over background is 

negligible (Müller et al. 2006).  It was developed from analyzing the cancer potency 
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database for known carcinogens (Gold et al. 1999; Gold et al. 1991).  From this analysis 

of carcinogens, certain classes of compounds were identified as being of higher 

carcinogenic potency (Kroes et al. 2004).  These compounds, labeled as Cohorts of 

Concern (COCs), were predicted to have such high carcinogenic potency that their 

acceptable dose would be lower than the TTC.  Therefore, the TTC is not recommended 

for COCs (CHMP 2006). 

The current risk assessment approach is for a single genotoxic impurity.  Multiple 

genotoxic impurities can increase the complexity of the risk analysis.  There are no 

quantitative risk analyses for mixtures of genotoxic impurities, without carcinogenicity 

information, to determine their carcinogenic risks.  However, for genotoxic carcinogens, 

USEPA has developed risk analyses for mixtures with exposure from hazardous waste 

sites.  Response addition is recommended for carcinogens, where the mechanism of 

interaction among carcinogens is unknown (USEPA 2000b).  A practical approach for 

the risk management of multiple genotoxic impurities can help ensure safe levels of 

impurities.  The TTC relies on several conservative assumptions because of the 

uncertainties from estimating a cancer risk value when no oncogenicity study exists 

(Humfrey 2007; Munro et al. 1999).  Development of a pharmaceutical takes several 

intermediate steps all of which can have reaction byproducts.  It has been estimated that 

20-25% of all intermediates are potentially genotoxic (Delaney 2007).  However, most 

intermediates/byproducts are removed, and unlikely to carry through to the final drug 

substance.  In instances where genotoxic impurities are measured in the final drug 

substance, an option is to incorporate a risk assessment approach for these impurities 

based on cumulative cancer risk.   

This paper evaluated cancer risk of multiple genotoxic impurities by considering 

how the following factors impact the cancer risk: (1) co-administration of up to three 

genotoxic impurities, (2) the proportion of carcinogenic genotoxic impurities among all 
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genotoxic impurities, and (3) structural similarity among multiple genotoxic impurities.  

Finally, the potential utility of this analysis in determining acceptable daily intakes of 

multiple genotoxic impurities in an NDS was discussed. 

Methods 

Data source 

The compounds used for this analysis were selected from the Gold 

carcinogenicity database (http://potency.berkeley.edu).  This database includes the 

TD50s of those chemicals tested in a two-year carcinogenicity study.  A total of 756 

chemicals were considered carcinogenic in rats and/or mice. 

In general, for a selected tumor at a target site, a portion of a population will 

develop this tumor spontaneously without exposure to any carcinogens.  For the rest of 

the population, the proportion that eventually develops the tumor or remains tumor-free 

for a lifetime depends on the magnitude of exposure to a specific compound.  For each 

compound and a selected tumor, the average daily dose at which 50% of the population 

will stay tumor free for a lifetime is defined as the TD50 (Peto et al. 1984).  If a 

compound was declared carcinogenic from more than one experiment within the same 

species at the same target site, the resulting TD50 of the species and target was 

reported as the harmonic mean of the TD50s 

(http://potency.berkeley.edu/td50harmonicmean.html).  For each species, the TD50 from 

the most potent target site was reported.  If the compound was declared carcinogenic in 

both rats and mice, the lower TD50 was reported.  

Construction of Cancer Potency Database (CPD)  

The developed cancer potency database (CPD) contained 756 carcinogens from 

the Gold carcinogenicity database as a representative distribution of carcinogens.  This 

approach is consistent with Kroes et al. (2004) and Fiori and Meyerhoff (2002), who 

used a similar dataset to establish an acceptable threshold for compounds which are 
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genotoxic or structurally alerting to be genotoxic.  The intent of this paper was to use the 

same database used for a single impurity and extend its application to multiple 

impurities. 

Since not all genotoxic compounds are carcinogenic, it was expanded to include 

additional entries which represented genotoxic noncarcinogens.  Naturally, the cancer 

risk for a genotoxic noncarcinogen is 0.  In this paper, to demonstrate how the probability 

that a genotoxic compound is a carcinogen impacts the cumulative cancer risk of 

multiple genotoxic impurities, 10, 50 and 80% of the compounds in the CPD were 

assumed to be carcinogenic.  For example, a constructed CPD with 80% of the 

carcinogenic genotoxic compounds included 756 nonzero risks and 189 zero risks.  

Similarly, a constructed CPD with 50% of the carcinogenic genotoxic compounds 

included 756 nonzero risks and 756 zero risks.    

The CHMP (2007) guidance on genotoxic impurities recommends that COCs be 

excluded from the use of the TTC.  The identified COCs were aflatoxins, N-nitrosos, 

azoxys, steroids, and tetrahalogenated dibenzodioxins and dibenzofurans.  The number 

of COCs in each structural alert category and the total in the CPD for the risk analysis 

are reasonably consistent with those in previous evaluations (Table 1) (Kroes et al. 

2004).  These COCs were removed from the database of carcinogens. 

 To determine the cumulative cancer risk of multiple impurities, it was important to 

understand if there is a relationship between structural alerts and cancer risks of 

compounds.  Eighteen general categories of structural alerts have been established 

previously (Ashby and Tennant 1991; Cheeseman et al. 1999; Kroes et al. 2004).  A 

compound could have multiple structural alerts and therefore could be in more than one 

structural alert category.    

 There may be an underlying mechanism such that certain structurally similar 

genotoxic impurities co-exist.  The implication is that the cancer risks of those co-existing 
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genotoxic impurities would fall within a certain risk range.  Therefore, an assumed risk 

range was selected which was 10-fold from the first impurity (100-fold total risk range).  

In comparison, the risk range for a randomly selected carcinogenic impurity is over 100-

million fold.   

Statistical Analysis 

The primary purpose of this analysis was to establish the cumulative cancer risk 

profile of up to three genotoxic impurities.  This was accomplished under each of the 6 

scenarios resulting from the combination of the following two factors, 

 three selected proportions of genotoxic impurities that are carcinogenic: 10, 50, 

and 80%, 

 two different risk inclusion rules: one without restriction and the other with the 10-

fold risk range.   

Based on the TD50s of genotoxic impurities given in the database, the cancer risks were 

derived under some assumptions.  Cumulative cancer risk profiles were then established 

for multiple genotoxic impurities using Monte Carlo simulations.  The percentiles of 

interest of these profiles were obtained.    

Derivation of the cancer risk from TD50 in mg/kg/day 

Based on the given TD50s in the database and a general assumption of a linear 

relationship between the concentration (mg/kg/day) of the impurity and the cancer risk in 

Equation 1, the cancer risk value for a 70 kg subject receiving 1.5 µg/day of a genotoxic 

impurity was derived. 
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For an impurity, select the TD50 in mg/kg/day as Concentration 1, then Risk 1 is 0.5.  

Based on Equation 1, the cancer risk at Concentration 2 is 
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Concentration 2 in ng/kg/day for a 70 kg subject receiving 1.5 µg of a genotoxic impurity 

per day is 21.43 ng/kg/day as calculated in Equation 3 below. 
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Substitute (3) into (2), the corresponding cancer risk, Risk 2, is 
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Or for a given genotoxic impurity with a TD50 in mg/kg/day, the cancer risk for a 70 kg 

subject receiving 1.5 µg/day of it is 
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Calculation of cumulative cancer risks associated with multiple genotoxic impurities 

A special relationship between the administration of dose dA of Impurity A and 

the corresponding probability pA of developing cancer is the cumulative distribution 

function (CDF) (Hogg et al. 2005).  Similarly, for Impurity B, there is a CDF that links the 

cancer risk, pB, to the dose dB of Impurity B.  For the joint administration of Impurity A at 

dose dA and Impurity B at dose dB, there is a joint CDF of these two impurities that gives 

the total cancer risk.  However, knowing the individual CDFs is not enough to uniquely 

define the joint CDF.  For example, if both individual CDFs are normal distributions, it 

would still require the correlation coefficient between the two to determine the joint CDF.  

At this point, there are no known joint CDFs for the cancer risks of these impurities in the 

literature.  This is likely due to the unknown relationship among the cancer risks of the 

impurities and extensive resources needed to conduct proper studies to estimate joint 

cancer risks. 

If the true joint CDF of the cancer risk of two impurities, A and B, is a surface that 

slowly rises at low doses and climbs up to eventually approach 1 as doses increase, 

then one can approximate it with a plane in the shallow rising region, the region of very 

low doses of Impurity A and Impurity B.  In a three-dimensional space made up of (x, y, 

z)’s, a general equation for a plane that passes through the origin can be expressed by  

         
a

x
 + 

b

y
 + 

c

z
 = 0, where a, b and c are nonzero constants.   (5) 

To approximate the slow rising region of the joint cancer risk of Impurities A and B, we 

can further restrict constants a, b and c to satisfy ab>0 and ac<0 to avoid negative 

cancer risks.  

Given that the approximated cancer risk at dose dA of Impurity A is pA and at 

dose dB of Impurity B is pB, both (dA, 0, pA) and (0, dB, pB) should satisfy Equation 5 as  
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a

d A  + 
b

0
 + 

c

pA  = 0, and                                                                                 (6) 

          
a

0
 + 

b

dB  + 
c

pB  = 0.                                                                                        (7) 

 

Summing up Equations 6 and 7 leads to the following, 

         
a

d A  + 
b

dB  + 
c

pp BA   = 0.                                                                              (8) 

 

Since (dA, dB, pA + pB) satisfies Equation 5, the joint cancer risk of these two impurities is 

the sum of the individual cancer risks, pA + pB.  Based on this rationale, the joint (or 

cumulative) cancer risk of multiple impurities in the low risk region can be approximated 

by adding the individual cancer risks.  This is consistent with the response addition used 

for carcinogens with unknown interactions (USEPA 2000b). 

Percentiles of cancer risks 

The percentiles of cancer risks for one impurity at the TTC of 1.5 µg/day have 

been published in the literature (Munro et al. 1999).  To compare the results from 

impurities in the CPD, the cancer risk corresponding to the same TTC of 1.5 µg/day was 

either 0 or calculated using Equation 4.  Percentiles were estimated from the calculated 

cancer risks.  For example, the 90th percentile is the value below which at most 90 

percent of all the cancer risks fall and above which the remaining 10% can be found.   

For multiple genotoxic impurities each at 1.5 µg/day, the cumulative cancer risks were 

obtained by Monte Carlo simulations as follows.  

Given a positive integer K with K > 1,  

1.  Randomly select one cancer risk from the set of cancer risks of all genotoxic 

impurities in the CPD. 
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2.  Repeat the previous step K times. 

3.  Obtain the cumulative cancer risk for the combination of K impurities by summing the 

individual cancer risks.  

4.  Repeat all steps 20,000 times. 

The 90th, 93rd and 95th percentiles were estimated from these 20,000 simulated 

cumulative cancer risks as described for one impurity.  This exercise was carried out for 

the CPD with 10, 50 or 80% of carcinogenic genotoxic impurities. 

Structural similarity in genotoxic impurities 

Certain genotoxic impurities may have a higher chance to appear together due to 

the similarity in chemical structures.  The cancer risks of these structurally similar 

impurities may be relatively closer than those that are not.  Under these conjectures, the 

cumulative cancer risks for the combination of K structurally similar genotoxic impurities, 

K > 1, were obtained by first selecting a genotoxic impurity.  Then allow only those with 

cancer risks within a 10-fold range of the selected one to be included in the set of K 

impurities and sum up these K cancer risks.  Cumulative cancer risks for K structurally 

similar impurities were simulated by Monte Carlo simulations.  If the first randomly 

selected genotoxic impurity was noncarcinogenic, hence a 0 cancer risk, then all 

structurally similar impurities would also have 0 cancer risks.  Therefore, these 

noncarcinogenic genotoxic impurities were not randomly selected in the simulation; 

instead, cumulative risks of 0 were added back to the final set of 20,000 simulated 

cancer risks.  

For multiple structurally similar genotoxic impurities each at 1.5 µg/day, the 

cumulative cancer risks were obtained by Monte Carlo simulations as follows.  

Given a positive integer K with K > 1, 

1.  Randomly select one cancer risk from the subset of nonzero cancer risks of the CPD, 

say risk R. 
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2.  Randomly select one nonzero cancer risk from the set that are within the closed 

interval of [R/10, 10R].  

3.  Repeat the previous step K-1 times. 

4.  Obtain the cumulative cancer risk for the combination of K impurities by summing the 

individual cancer risks.  

5.  Repeat all steps 20,000 times. 

The 90th, 93rd and 95th percentiles were estimated from these 20,000 simulated 

cumulative cancer risks and all the 0 cancer risks as described for one impurity.  This 

exercise was carried out for the CPD with 10, 50 or 80% of carcinogenic genotoxic 

impurities. 

To better understand the association between the chemical structure and the 

cancer risk, a structure based categorization of the 756 carcinogenic compounds from 

the CPD was created.  This process was aided by a database of structural 

characterizations for carcinogens provided by Dr. Kirk Arvidson (United States Food and 

Drug Administration).  Each genotoxic compound was categorized as either unlabeled 

(no structural alerts) or some of the 18 structural alert groups.  The cancer risks of the 

genotoxic impurities in each structural alert group were plotted in Figure 4 and ordered 

by their medians.  The 2.5th and 97.5th percentiles of each of these 19 groups (18 

structural alert groups and one unlabeled) were also plotted to assess the impact of the 

chemical structure on the cancer risk. 

Results 

Cancer risk of a single genotoxic impurity compared to literature 

Our results for a single genotoxic impurity (Table 2) are consistent with previous 

analyses (Fiori and Meyerhoff 2002; Kroes et al. 2004; Munro et al. 1999).  A survey of 

different analyses used to develop a risk specific dose for genotoxic compounds 

determined that the results are slightly but not significantly different from each other 
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(Fiori and Meyerhoff 2002).  Our results show that the probability of not exceeding a 1 in 

100,000 (10-5) excess risk of cancer when exposure is at the TTC of 1.5 µg/day is 95%, 

assuming 50% of genotoxic chemicals are also carcinogenic.  Munro et al. (1999) 

determined that the probability was 93% for the same dose, excess cancer risk, and 

assumptions but the database contained COCs.  Kroes et al. (2004) also observed an 

increased probability when COCs were removed.   

Cancer risk of multiple genotoxic impurities 

As the number of genotoxic impurities increased, so did the excess cancer risk 

estimates (Table 2).  The cumulative probabilities for cumulative cancer risks of up to 

three genotoxic impurities are plotted in Figure 1, assuming 50% of the impurities are 

carcinogenic and each impurity is controlled to 1.5 µg/day.  The addition of a genotoxic 

impurity increased the 90th percentiles (Figure 1). 

Impact of the assumption of probability that a genotoxic compound is carcinogenic 

The probability that a genotoxic compound is also a carcinogen (predictive 

probability) had an impact on excess cancer risk estimation of a single genotoxic 

impurity (Row 1 in Table 3).  This probability was set at 50% for genotoxic chemicals in 

risk assessment involving the TTC (Barlow et al. 2001; Müller et al. 2006).  Higher or 

lower probabilities may be used with proper justifications.  As this probability increased, 

the corresponding cancer risk also increased.  For example, consider the CPD for a 

single impurity, as this probability increased from 10, 50 to 80%, the cancer risk at the 

TTC increased from 1.79x10-10, 3.27x10-6, to 7.71x10-6 accordingly.  For multiple 

genotoxic impurities (Table 3), this probability has a similar effect on the excess cancer 

risk as it has on a single impurity. 

Impact of related potencies for multiple genotoxic impurities 

Structurally similar genotoxic impurities may have similar excess cancer risks 

after exposure at the TTC.  For each category of alerting structures, the range of 2.5th to 
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97.5th percentiles for excess cancer risk varied between 3 log orders up to 8 log orders 

except for aflatoxin (2.17 log) and alpha nitrofuryl compounds (2.59 log).  The 

overlapping of the (2.5th, 97.5th) percentile intervals of the structural alert categories 

indicates a weak relationship between the structure and cancer risk (Figure 4).  

However, stronger relationships could exist with compounds that differ only by a few 

elements.  Assuming a stronger relationship between the cancer risk and similar 

chemical structure, the cumulative cancer risks for multiple impurities are presented in 

Table 4 and plotted in Figure 2.  This stronger relationship would only allow additions to 

a single impurity by those with cancer risks in the 10-fold range of the first impurity.  This 

resulted in lower excess cancer risks than before.  For example, if one assumes 50% of 

genotoxins are human carcinogens, then the 90th percentile of the cumulative cancer risk 

for three impurities at the TTC would decrease from 1.73x10-5 to 1.20x10-5.  Recall that 

the probability that a genotoxic compound is also a carcinogen (predictive probability) 

has an impact on excess cancer risk estimation of a single genotoxic impurity (Row 1 in 

Table 3 or Table 5).  As the predictive probability increased from 10, 50 to 80%, the 

cumulative cancer risk of these impurities at the TTC increased as well (Figures 3A-3C) 

for structurally similar impurities. 

Discussion 

If a genotoxic chemical has the potential to enter the synthesis of a drug 

substance, it is removed by process chemistry and analytical tests confirm removal 

(Argentine et al. 2007).  Removal of the genotoxic compound must at a minimum ensure 

that the potential impurity is below a safe level. 

Threshold genotoxic mechanisms may exist such as topoisomerase inhibition 

(Anderson 2004; Lynch et al. 2003), oxidative stress (Beddowes et al. 2003), aneuploidy 

from interaction with cell division (Arni and Hertner 1997; Decordier et al. 2002), and 

DNA synthesis inhibition (Galloway et al. 1998).  Furthermore, in vitro studies with 
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methyl methanesulfonate and ethyl methanesulfonate indicate that a threshold may exist 

for some alkylating agents (Doak et al. 2007; Jenkins et al. 2005).  If a genotoxic 

impurity has a threshold mechanism, then a permissible daily exposure (PDE) can be 

derived by dividing the no-observed effect level or lowest-observed effect level by 

uncertainty factors (CHMP 2006).  When no threshold can be demonstrated, the TTC 

approach is applied to the genotoxic impurity.  

Currently, the risk assessment framework surrounding multiple genotoxic 

compounds is limited.  This can lead to concerns about how to control for these 

impurities in an NDS (Jacobson-Kram and Jacobs 2005).  The quantitative risk analysis 

described in this report will help inform risk managers about acceptable levels for a 

mixture of genotoxic impurities. 

We recognize that cancer risks reported in this paper may be overestimated.  

Establishment of the TTC is based on several conservative assumptions, which have 

been detailed in previous publications (Delaney 2007; Humfrey 2007; Krewski et al. 

1990; Munro et al. 1999).  These assumptions were applied so that a safe dose can be 

established from little toxicological information.  Therefore, the slight increase in cancer 

risk observed in this report from multiple impurities seems relatively insignificant when 

considering the assumptions used in development of the TTC.  

From our analysis, aflatoxins, azoxy compounds, steroids, N-nitroso compounds 

and halogenated diobenzo-p-dioxins and dibenzofurans were the most potent 

carcinogenic structural classes (Figure 4).  This is consistent with Kroes et al. (2004) 

who labeled these compounds as COCs.  The COCs and nonCOCs had variation 

surrounding cancer potency.  While many of the COCs were potent carcinogens, some 

of the COCs were not.  Furthermore, some compounds were highly potent even though 

they were not labeled as a COC.  CHMP (2007) and Kroes et al. (2004) exclude 
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compounds in the COC structural class from the TTC risk analysis.  COCs were 

excluded from our analysis to follow this guidance. 

These cancer risks were estimated based on different assumptions about a 

genotoxic compound being carcinogenic.  Genotoxicity tests, although useful tools to 

help identify potential carcinogens, are not 100% predictive.  As the predictive probability 

for carcinogenicity of a genotoxicity test increases from 10 to 80%, the associated 

cancer risk also increases (Table 3), which is consistent with previous findings (Munro et 

al. 1999).  Risk values at the 50th and 80th percentiles are considered the most relevant 

for risk assessment as they cover the range of predictability for a genotoxicity assay 

(Barlow et al. 2001; Kirkland et al. 2005; Matthews et al. 2006a). 

In some instances a genotoxic impurity may be structurally similar to another 

impurity.  The synthesis of an NDS is the reaction of compounds to form a 

pharmaceutical product.  If a genotoxic compound is introduced in the synthesis of an 

NDS, this compound could become an impurity.  In addition, other structurally similar 

reaction byproducts or subsequent compound intermediates could become impurities as 

well.  As shown in Figure 4, for compounds with the same alerting structure, 

carcinogenic potency varied amongst compounds.  Many of the compounds with the 

same alerting structure still differed substantially with the rest of the moiety, or had an 

additional structural alert.  When considering the cumulative cancer risk of multiple, 

structurally-related impurities, the likelihood of toxicological synergy is unknown but is 

considered to be unlikely at these vanishingly small doses.  Structurally similar 

compounds may have a similar mechanism of action, which may imply risk values that 

are close to each other.  However, slight changes in structure could influence the ability 

for a compound to be absorbed, metabolized and penetrate into the target organ.  The 

analysis compared the cumulative risk based on random potencies of multiple impurities 

with potencies that all fell within a  10-fold of first impurity.  When cancer risk of multiple 



52 
 

genotoxic impurities was dependent on the first impurity, total cancer risk was decreased 

relative to total cancer risk for structurally-unrelated impurities.  This resulted in a more 

favorable outcome.  Therefore, even if it were assumed that genotoxic impurities related 

in structure had similar carcinogenic potencies, it should not result in lower safety limits 

than for compounds structurally unrelated to each other.   

This mixture assessment assumes chronic exposure of the genotoxic impurity.  It 

would not affect the assumptions used to derive the staged TTC approach, allowing 

higher daily exposures over shorter durations (Müller et al. 2006).  As for single 

impurities, higher risk values and thus higher exposures may be considered for life-

saving medicines such as those for the treatment of cancer or Alzheimer’s disease 

(CHMP 2006).  Finally, lower exposure to genotoxic impurities may be recommended for 

medicines that are indicated for children (USEPA 2005b). 

Our risk assessment approach for multiple genotoxic impurities is consistent with 

risk assessment practices for mixtures of carcinogens, where response addition is 

currently applied (Kaldor and L'Abbe 1990; Kodell and Chen 1994; Krewski and Thomas 

1992; USEPA 2000b).  Analyses for mixtures of carcinogens have been limited to 

specific instances such as Superfund contamination (USEPA 2000b).  The same 

principles were applied to genotoxic impurities, where the patient may be exposed to a 

mixture of genotoxic impurities along with the NDS.  Practical decisions for the risk 

management of genotoxic impurity mixtures should consider the following important 

factors: low level of potential exposure, conservative nature of the TTC based on limited 

genotoxicity information, extensive safety testing of the drug substance containing the 

impurities, and the benefit a patient receives from consuming the pharmaceutical (Müller 

et al. 2006; Munro et al. 1999). 
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Conclusions 

The formation of genotoxic impurities in the synthesis of an NDS should be 

avoided whether as a single impurity or multiple impurities.  If removal of genotoxic 

impurities is not technically feasible, then a safety limit must be determined for a mixture 

of potential genotoxic impurities.  The TTC is a generally accepted exposure for a single 

genotoxic impurity (CHMP 2006; Kroes et al. 2004; McGovern and Jacobson-Kram 

2006; Müller et al. 2006).  This paper furthers the discussion by using a probabilistic 

analysis to characterize cancer risk for a mixture of genotoxic impurities. 

With the addition of one to two genotoxic impurities, a slight increase in cancer 

risk was observed.  However, this minimal increase is not of concern given the 

conservative assumptions incorporated in the TTC.  When considering structurally-

related impurities, the cumulative cancer risk assessment is more favorable compared to 

unrelated impurities.  This is based on the results of statistical simulation of compounds 

with related potencies and the expectation that toxicological synergy is not likely at these 

extremely low doses.  Determining the acceptable number of genotoxic impurities 

warrants a broader discussion; however, this analysis suggests that up to three 

genotoxic impurities, whether structurally related or not, should be acceptable in most 

cases in pharmaceutical development.  Four or more genotoxic impurities is a less likely 

scenario and should be discussed on a case-by-case basis. 
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Tables 

Table 1.  Cohorts of concern identified in current database. 
 
 Structure Our Database

Kroes et al. 
2004 

Aflatoxin 5 5 
N-nitroso 104 105 
Azoxy 6 5 
Steroid 13 11 

tetrahalogenated 
dibenzodioxins and 
dibenzofurans 5 5 
Total  133 131 
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Table 2.  The percentiles of cumulative cancer risk of multiple genotoxic impurities 
assuming 50% of the genotoxic impurities are carcinogens. 
 

No. of 
Impurities 

Percentile of Cancer Risk   
90% 93% 95% 

1 3.27E-06 6.57E-06 1.03E-05
2 9.85E-06 1.50E-05 2.32E-05
3 1.73E-05 2.73E-05 3.79E-05

 
Note 1.  Each impurity is controlled to a TTC of 1.5 µg/day. 
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Table 3.  The 90th percentile of the cumulative cancer risks of multiple genotoxic 
impurities each with 10, 50 and 80% as carcinogens. 
 

No. of 
Impurities 

Percent of Carcinogens   
10% 50% 80% 

1 1.79E-10 3.27E-06 7.71E-06
2 2.67E-07 9.85E-06 1.79E-05
3 1.09E-06 1.73E-05 3.08E-05

 
Note 1.  Each impurity is controlled to a TTC of 1.5 µg/day. 
 
Note 2.  For one impurity from a sample of 10% being carcinogens, i.e. 90% zero cancer 
risks and 10% nonzero risks, the 90th percentile is 1.79 x 10-10, the midpoint between 0 
and the lowest nonzero risk of 3.58 x 10-10. 
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Table 4.  The percentiles of cumulative cancer risks of multiple impurities with individual 
cancer risks contained within a 10-fold range.  Assume 50% of the genotoxic impurities 
are carcinogens. 
 

No. of 
Impurities 

Percentile of Cancer Risk   
90% 93% 95% 

1 3.27E-06 6.57E-06 1.03E-05
2 7.70E-06 1.25E-05 1.92E-05
3 1.20E-05 1.83E-05 2.87E-05

 
Note 1.  Each impurity is controlled to a TTC of 1.5 µg/day. 
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Table 5.  The 90th percentile of the cumulative cancer risks of multiple genotoxic 
impurities each with 10, 50 and 80% as carcinogens and with individual cancer risks 
contained within a 10-fold range. 
 

No. of 
Impurities 

Percent of Carcinogens   
10% 50% 80% 

1 1.79E-10 3.27E-06 7.71E-06
2 9.83E-10 7.70E-06 1.46E-05
3 1.84E-09 1.20E-05 2.16E-05
 

Note 1.  Each impurity is controlled to a TTC of 1.5 µg/day. 
 
Note 2.  For one impurity from a sample of 10% being carcinogens, i.e. 90% zero cancer 
risks and 10% nonzero risks, the 90th percentile is 1.79 x 10-10, the midpoint between 0 
and the lowest nonzero risk of 3.58 x 10-10.  
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Figure 1.  Cumulative probability of cumulative cancer risk for up to three genotoxic 
impurities.  Assume 50% of the impurities are carcinogenic and each impurity is 
controlled to a TTC of 1.5 µg/day. 
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Figure 2.  Cumulative probability of cumulative cancer risk for up to three genotoxic 
impurities with individual cancer risks contained within a 10-fold range.  Assume 50% of 
the impurities are carcinogenic and each impurity is controlled to a TTC of 1.5 µg/day. 
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C. 
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Figure 3.  Cumulative cancer risk (10-5) at the 90th(3A), 93rd (3B) and 95th (3C) percentile 
for up to three genotoxic impurities.  Assume 50% of the impurities are carcinogenic and 
each impurity is controlled to a TTC of 1.5 µg/day. 
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A STRATEGY FOR RISK ASSESSMENT OF HUMAN GENOTOXIC METABOLITES1 

Abstract 

The role of metabolism in genotoxicity and carcinogenicity of many chemicals is 

well established.  Accordingly, the use of metabolic activation systems in genotoxic 

hazard testing is routinely applied when testing pharmaceutical candidates prior to 

clinical investigations.  However, it is also well known that significant differences can 

exist between human metabolism and that which occurs with in vitro and in vivo 

genotoxicity tests.  This poses challenges when considering the adequacy of hazard 

identification and cancer risk assessment if a human metabolite of genotoxic concern is 

identified during the course of drug development.  Since such challenges are particularly 

problematic when realized in the later stages of drug development, a framework for 

conducting a carcinogenic risk assessment for human genotoxic metabolites is 

desirable.  Here we propose a risk assessment method that is dependent upon the 

availability of quantitative human and rodent ADME (absorption, distribution, 

metabolism, excretion) data, such that absolute exposures to a metabolite of genotoxic 

concern can be estimated at the intended human efficacious dose and the maximum 

dose used in the 2-year rodent bioassay(s).  The exposures are then applied to the risk 

assessment framework that allows one to understand the probability of a known or 

suspect genotoxic metabolite posing a carcinogenic risk in excess of 1 in 100,000.   

Practical case examples are presented to both illustrate the application of the risk 

assessment method within the context of drug development and to highlight its utility and 

limitations. 

                                                 
1 This chapter has been published previously in:  Dobo KL, Obach RS, Luffer-Atlas D, and Bercu 
JP. (2009). A Strategy for Risk Assessment for Human Genotoxic Metabolites. Chem. Res. 
Toxicol. 22, 348-56.  Use of the manuscript was with permission from the primary author.  
Contributions to the manuscript were as follows:  (1) developing a cancer risk assessment model 
for genotoxic metabolites, (2) mathematical evaluation of the case studies, (3) overall risk 
assessment strategy, and (4) supporting background material. 
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Introduction 

In general, the non-clinical safety testing of a pharmaceutical drug candidate 

assesses four major toxic endpoints: (1) genotoxicity, (2) acute and/or chronic general 

target organ toxicity (3), acute and/or chronic reproductive toxicity, and lastly, (4) 

carcinogenicity.  Since these toxicities are complex and often inter-dependent, there can 

be additional challenges that go beyond traditional non-clinical safety assessment for the 

parent drug.  Recently there have been efforts to develop a common framework to 

manage the safety of drug metabolites, such that pharmaceutical sponsors and 

regulators have confidence that non-clinical safety evaluations conducted in support of 

clinical investigations adequately assess the safety of the full profile of metabolites to 

which humans are exposed.  In the development of a framework for assessing 

metabolite safety, genetic safety warrants special consideration given that the role of 

metabolism in genotoxicity and carcinogenicity of chemicals is well established and that 

some mechanisms of genotoxicity and carcinogenicity are believed to occur through 

non-threshold mediated mechanisms of action.  Furthermore, the ability of both in vitro 

and in vivo test systems to model human metabolism can be variable and therefore may 

limit the ability to adequately conduct human genotoxicity and carcinogenicity risk 

assessment in certain cases (Ku et al. 2007).  Despite the need for evaluating genetic 

safety of metabolites, no practical recommendations are available to address human 

genotoxic metabolites that are identified during clinical development. 

Some safety guidances have been developed with triggers for concern based on 

relative abundance of metabolites (Baillie et al. 2002; USFDA 2008b).  Others have 

proposed a strategy in which absolute exposure to metabolites in humans triggers 

further consideration of metabolite safety (Smith and Obach 2005).  A working group 

convened at the 4th International Workshop of Genotoxicity Tests (IWGT) acknowledged 

the need for a practical strategy to respond to documented human metabolite exposures 
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and suggested that an absolute exposure, a threshold of toxicological concern (TTC), be 

defined in order to better support a risk assessment approach for genotoxic human 

metabolites (Ku et al. 2007).   

In traditional risk assessment, drug exposure is quantified so that its risk may be 

characterized in relation to a dose-response assessment.  While relative abundance of 

metabolites can be used as a trigger for an assessment, absolute abundance enables 

exposure to be quantified to enable risk assessment.  Excreted drug-related material can 

also be used to quantify the systemic body burden of a genotoxic substance, allowing for 

an evaluation of risk (Smith and Obach 2005, 2006).  The most effective risk 

assessment should ideally encompass exposure to both circulating and excreted drug-

related material. 

Risk-based safety assessments have been applied to manage human exposure 

to genotoxic/carcinogenic compounds for numerous situations.  Some of the basic 

principles include the assumption that compounds that are carcinogenic via a threshold 

mode of action have no adverse effects at low doses (Butterworth and Bogdanffy 1999; 

Butterworth et al. 1995; Clewell 2005; USEPA 2005a).  In such cases, a no-adverse 

effect level (NOAEL) or lowest-adverse effect level (LOAEL) is identified from all relevant 

species tested to determine the point of departure.  The point of departure is then 

divided by appropriate safety factors to derive the acceptable dose at which no 

deleterious effects are expected (Dourson 1996; Dourson and Stara 1983; USEPA 

2002).  In contrast, for genotoxic carcinogens, a non-threshold mode of action has been 

assumed which means there is a risk of cancer even from exposure to low doses 

(USEPA 2005a).  As such, carcinogens in food, water, air, pharmaceuticals, etc. are 

limited so that the risk of cancer over background from its exposure is negligible (Barlow 

et al. 2006; ICH 1997c; Kroes et al. 2004; USEPA 1991).  Typically, excess cancer risk 

is calculated by using very conservative, low-dose linear extrapolation techniques.   



67 
 

The most recent example of broad application of risk-based safety assessment 

within the pharmaceutical industry, is establishing allowable limits of exposure to 

genotoxic impurities present in active pharmaceutical ingredients.  In general, impurities 

with genotoxic potential are considered “unusually toxic” and are not qualified by the 

thresholds used for other impurities (CHMP 2006; ICH 2006a; Jacobson-Kram and 

McGovern 2007; McGovern and Jacobson-Kram 2006).  Instead, a risk-based approach 

has been applied to control genotoxic impurities to negligible levels (Fiori and Meyerhoff 

2002; Kroes et al. 2004; Müller et al. 2006).  Since carcinogenicity information is often 

not available for genotoxic impurities, an acceptable threshold (i.e. TTC) was determined 

by assessing the carcinogenic potencies from a large database of known carcinogens 

and setting an exposure limit to a dose that has a low likelihood of exceeding a 

negligible increase in cancer risk (CHMP 2006).  This approach was conservative 

because it not only assumed low-dose linear extrapolation, but it also assumed the 

genotoxic impurity would be as carcinogenic as some of the most potent carcinogens 

(Munro et al. 1999). 

The purpose of this current work is to describe an extension of a risk-based 

approach for managing genotoxic metabolites of pharmaceuticals that relies on data 

generated during the normal progression of clinical development.  The strategy is 

centered upon the availability of human ADME data at which point human metabolites 

are confirmed and quantitated.  Using this information, human metabolites of genetic 

safety concern can be subsequently evaluated using a risk assessment model that 

identifies the probability that a known or suspect genotoxic metabolite will pose an 

excess cancer risk greater than 10-5 (i.e. 1 excess cancer over background per 100,000 

people exposed).  In addition, the results of the risk assessment will: 1) provide an 

understanding of the adequacy of metabolite representation in rodent carcinogenicity 

studies; 2) highlight the need to consider an alternative approach for carcinogenicity 
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testing; and, 3) inform potentially difficult drug development decisions.  The rationale and 

approach used for each step of the risk assessment process is described herein.  

Representative case studies are used to illustrate the practicality of the approach within 

the context of drug development. 

Genotoxic Hazard Identification of Metabolites Identified During Drug Development 

Genetic toxicology testing is conducted in the early stages of drug development 

with the intent to identify hazards associated with both the parent molecule and its 

metabolites.  This is accomplished by: (1) employing metabolic activation systems 

(typically Aroclor-induced rat liver S9) when conducting in vitro tests, and (2) conducting 

an in vivo genotoxicity assay—that is, the micronucleus assay—in rat or mouse.  Many 

pharmaceutical sponsors conduct in vitro genetic toxicology screening assays during the 

drug discovery phase.  In many cases, the observation of a genotoxic hazard in this 

early stage, whether under direct or metabolic conditions, will direct design efforts away 

from potentially hazardous substituents in favor of drug candidates without this potential 

liability.  According to ICH M3 (ICH 1997d), all pharmaceutical sponsors must conduct 

standard in vitro genetic toxicology hazard identification studies such as Ames and 

mammalian cytogenetic assays prior to initiation of clinical investigations, whereby the in 

vivo micronucleus study is required prior to initiation of Phase 2 clinical investigations.  

Identification of a genotoxic hazard at this point in the drug development process may 

lead to further investigations to understand the relevance of the genotoxic response, or 

termination of development of the drug candidate.  Attempting to understand the 

relevance of a positive result in the presence of Aroclor-induced S9 is not a simple task 

because the known in vivo metabolic profiles in rat and human may not be directly 

related to in vitro metabolism in the presence of S9. 

The ability of in vitro and in vivo genotoxicity tests to model human metabolites of 

interest can be varied and therefore limit the capability to adequately conduct human 
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carcinogenicity risk assessment.  The generation of both false positive and false 

negative results in genotoxicity tests is possible and the issues and potential 

shortcomings of induced rat liver S9 were recently reviewed in a report from the 4th 

International Workshop on Gentoxicity Testing (Ku et al. 2007).  In addition, case 

examples were shared to illustrate other experimental approaches to address the 

shortcomings, such as the use of alternative metabolic activation systems and direct 

testing of metabolites of concern. 

Given the limitations of standard genotoxicity testing methods, it seems prudent 

to consider the adequacy of human safety assessment of drug metabolites.  Here we 

propose a risk assessment strategy triggered by human exposure to known or suspect 

genotoxic metabolites identified through the conduct of a human ADME study using 

radiolabeled drug, typically in Phase 2 of clinical development.  

Risk Characterization Framework for Human Genotoxic Metabolites 

The proposed framework for risk characterization of genotoxic human 

metabolites depends on three factors.  The first is the probability that a compound with a 

structure-based concern for genotoxicity or data-driven evidence of genotoxicity could be 

a human carcinogen.  In silico models and structural analysis are used to provide alerts 

for potentially positive results from genotoxicity assays (Matthews and Contrera 2007; 

Matthews et al. 2006b).  Genotoxicity tests are used to evaluate positive findings from 

the models and screen compounds for their potential to be carcinogens.  It is estimated 

that < 5-10% of all chemicals would be considered rodent carcinogens (Fung et al. 

1995).  However, compounds that result in positive genotoxicity tests are more closely 

associated with positive results from cancer studies in rodents.  For example, the Ames 

assay has approximately a 60% concordance with results from rodent carcinogenicity 

studies (Matthews et al. 2006a).  Yet the neoplasias developed in rodents can be 

species specific, with limited relevance to humans.  So for this evaluation and others 
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(Barlow et al. 2001; Müller et al. 2006), it has been assumed that there is about a 50% 

probability that a genotoxic compound, determined by structure or appropriate hazard 

testing, could be carcinogenic to humans. 

The second factor is the probability that a negligible cancer risk (i.e., 1 incidence 

in 100,000) will not be exceeded from exposure of the metabolite in humans.  This can 

be determined using a risk distribution for chemicals known to be carcinogens.  Each 

carcinogen in the risk distribution has an associated TD50, or the average daily dose at 

which 50% of the population remains tumor free over a lifetime (Gaylor and Gold 1995; 

Gold et al. 1984; Gold et al. 1991; Peto et al. 1984; Sawyer et al. 1984).  The estimated 

exposure to a genotoxic metabolite in humans was linearly extrapolated to a TD50.  That 

is, TD50 (mg/kg/day) = [human metabolite exposure (mg/kg/day) × (0.5/0.00001)], 

assuming the exposure was associated with a 1 in 100,000 excess cancer risk.  The 

TD50 was compared relative to a distribution of known animal carcinogens [appendix 1.2 

in (Fiori and Meyerhoff 2002)] to calculate the proportion of compounds that are greater 

than this TD50.  This proportion was considered to represent the probability of not 

exceeding an excess cancer risk of 1 in 100,000 from exposure of the metabolite in 

humans.  There is precedent for using this level of risk for genotoxic impurities, and for 

carcinogenic residual solvents in pharmaceuticals (CHMP 2006; ICH 1997c).  This 

approach is similar to risk assessments for impurities in food or pharmaceuticals where 

the genotoxic hazard is known (Fiori and Meyerhoff 2002; Kroes et al. 2004; Müller et al. 

2006). 

The final factor included in the risk characterization framework is the probability 

that, if a genotoxic metabolite was carcinogenic, then it would be detected as a positive 

tumorigenic response in animal studies.  Risk assessments for genotoxic impurities have 

typically been based on limiting exposures so that a negligible human cancer risk would 

not be exceeded.  As such, the level of the genotoxic impurity is reduced to low levels, 
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resulting in a limited ability to detect the tumorigenic effects of an impurity in the 

carcinogenicity study.  Exposure to genotoxic chemicals from metabolism of drugs can 

occur, however, at a much higher total exposure level, which will result in an increased 

probability of detecting tumors via carcinogenicity studies in rodents.  In this 

assessment, it was assumed that a 5% response is the limit of sensitivity for a typical 

carcinogenicity study (Cheeseman et al. 1999).  This tumor response was extrapolated 

to a TD50, based on the known total exposure to a genotoxic metabolite, using methods 

derived by Gaylor and Gold (1995), which are the same methods used to extrapolate 

TD50 values for known carcinogens in the Cancer Potency Database 

(http://potency.berkeley.edu/ ) (Gaylor and Gold 1995).  The TD50 was then compared 

relative to a distribution of known animal carcinogens [Appendix 1.2 in (Fiori and 

Meyerhoff 2002)] to determine the proportion of compounds that have cancer potencies 

less than the TD50.  This proportion was then considered the probability of detecting 

tumors via carcinogenicity studies in rodents from exposure to the metabolite.  Since this 

analysis is based on exposure of the metabolite, this takes into account the 

pharmacokinetic differences between species and the probability can be based on the 

maximum exposure in a single species. 

Applying the three factors described above, the total probability of a genotoxic 

metabolite not exceeding a 1 in 100,000 excess cancer risk can be estimated.  The 

probability of not exceeding an excess cancer risk of 1 in 100,000 from exposure of the 

metabolite in humans (PA) was added to the probability of detecting tumors via 

carcinogenicity studies in rodents (PB).  This resultant probability was adjusted with the 

probability that a genotoxic compound is also carcinogenic (PC), with methodology 

similar to Munro et al. (1999).  Thus, the total probability for not exceeding a 1 in 

100,000 excess cancer risk was (PA  PB)  (PC).     
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The total probability for not exceeding a 1 in 100,000 excess cancer risk was 

estimated for various combinations of animal and human doses ranging from 100 mg/kg 

to 0.00001 mg/kg (Table 1).  A critical criterion for these estimations was that the 2-year 

oncogenicity study for the drug substance, the source of the genotoxic metabolite, did 

not result in a positive tumorigenic response explained by a genotoxic mode of action.  It 

was assumed for the calculated probabilities that human exposure is lifetime daily 

exposure (70 years).  Furthermore, exposure in rodents is assumed to be associated 

with standard 2-year rodent bioassays.   

There were several generalizations derived from the analysis summarized in 

Figure 1.  First, the probability of not exceeding a 10-5 excess cancer risk over 

background increases as exposure to rodents increases.  Specifically, if the effective 

animal exposure to the metabolite is >10 mg/kg/day then there is a high probability (88-

100%) of not exceeding the cancer risk.  This is intuitive because high rodent exposures 

can increase detection in the carcinogenicity study.  Second, the probability of not 

exceeding at 10-5 excess cancer risk over background increases as human exposure 

decreases.  Low human exposure decreases the potential effect of a genotoxic 

metabolite.  A metabolite exposure of 0.00001 mg/kg or less has a high probability (93-

100%) of not exceeding the cancer risk.  Lastly, probability also increases as the ratio of 

animal exposure over human exposure increases.  When the ratio is 1000x or greater, 

there is a high probability (92-100%) of not exceeding the cancer risk. 

Total Exposure-Based Risk Assessment for Human Metabolites 

After a drug is administered to an organism, the number of possible metabolites 

that could be formed can be numerous.  In most cases, the total number of metabolites 

observed is less than 100 and frequently in the range of 20 to 50.  Drugs that possess a 

high lipophilicity tend to undergo multiple serial and parallel metabolic reactions before 

being converted to metabolites polar enough to be readily excreted.  Metabolic pathways 
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for drugs that are more hydrophilic tend to be simpler.  Furthermore, each drug can 

possess multiple potential sites for metabolism and even with modern analytical 

methodologies (e.g., mass spectrometry and NMR) it is not often straightforward to 

identify the structure of every metabolite.  Thus, it is not possible to generate authentic 

standards of every potential metabolite of a new drug and to develop methods to detect 

and quantitate each of these entities.  To circumvent this insurmountable task, studies 

are conducted as early as Phase 1 and as late as Phase 3 using radiolabeled analogs of 

drugs (typically carbon-14; sometimes tritium), in which the radiolabeled material is 

administered orally to laboratory animals and then to humans.  Over the course of these 

studies, excreta and plasma are collected to assess mass balance and 

pharmacokinetics of the radioactivity.  These matrices are usually analyzed by HPLC 

with radiometric detection to generate quantitative profiles of metabolites.  Due to the 

complex data package that is generated, this is usually termed a human “ADME” study: 

absorption, distribution, metabolism, and excretion.  Such a study is the only means by 

which a complete, comprehensive, and quantitative profile of metabolites of a new 

compound can be obtained.  With modern spectroscopic techniques, such as mass 

spectrometry and NMR spectrometry, chemical structures for the metabolites can be 

proposed.  Thus, in a radiometric ADME study, identification and quantitation of 

metabolites can be done in the absence of authentic standards or specific analytical 

methods for these metabolites.  The quantitative metabolite profile data obtained in the 

human ADME study represents a powerful piece of information with which to make 

assessments of the suitability of preclinical safety information, including genotoxicity.  

However, it should be noted that for drugs in which the parent compound and/or drug-

related material has a long half-life, the data obtained from the single dose ADME study 

may not be wholly representative of the exposures to metabolites upon repeated dosing.  

Pharmacokinetic modeling can be applied to make such estimates of steady-state 



74 
 

exposures, provided that the clearance does not change over time.  This is a reasonable 

assumption for almost all cases.    

 In most ADME studies in humans, quantitative profiles of metabolites are 

obtained in plasma, urine, and fecal homogenates.  Measurement of the exposures of 

various tissues to specific metabolites is not feasible in humans, and while such 

measurements could be made in small laboratory animal species, the data collection is 

of questionable value since there are no means by which to make a direct comparison to 

human.  Knowledge of the circulating metabolite profile can provide insight into some 

specific types of toxicities (Smith and Obach 2005, 2006), but in general this information 

will be of lesser value in understanding the contribution of metabolites to risk of 

genotoxicity.  Circulating metabolite profiles can be misleading when attempting to 

address the question of total systemic metabolite exposure.  This is because the 

concentration of a metabolite in plasma is driven not only by how readily the metabolite 

is formed, but also by its distribution properties.  Compounds that are highly bound to 

serum albumin, such as carboxylic acid metabolites, can represent very large peaks in 

HPLC radio-chromatograms from plasma, but because these do not partition readily 

outside the plasma compartment, their abundance in the entire body can be small.  

Other metabolites that tend to distribute into tissues, such as lipophilic amines, will 

appear to be minor in circulation, but can actually represent a large body burden.  Also, 

typical cancer potency values (e.g. TD50) are measured relative to dose (mg/kg/day) 

delivered to the animal and not plasma levels.  For these reasons the metabolites in 

excreta were used in this analysis versus circulating metabolites.  

 The quantitative metabolite profile in excreta can be leveraged in gaining an 

understanding of the total exposure, albeit indirect, to metabolites.  In this case, the 

exposure is one of a “total body burden” to a metabolite, and not a discrete 

concentration or AUC value.  The body must be considered as one homogeneous 
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compartment, and the potential for a metabolite to selectively concentrate in a specific 

tissue cannot be factored in (or it is considered to be similar across species when 

making inter-species comparisons).  To assess total body burden, the complete 

metabolic tree must be constructed from the excretory metabolite data, and intermediate 

metabolite structures may need to be inferred if they are not directly observed.  (For 

example, if an excretory metabolite is a hydroxyglucuronide of the parent drug, and the 

hydroxylated intermediate metabolite itself is not observed in excreta, then its presence 

in the body must be inferred.)  This is especially important for metabolites for which there 

is greater scrutiny on the possibility of genotoxicity due to chemically reactive structures.  

Such reactive metabolites are only rarely observed in radiometric HPLC profiles (due to 

instability and/or very low abundance), and it is their downstream stable end products 

which are observable.  Common examples of such metabolite types include mercapturic 

acids (arising via glutathione conjugation of reactive electrophiles), dihydrodiols (arising 

from hydrolysis of epoxides), and lactams (arising via oxidation of iminium ions) 

(Kalgutkar et al. 2005).  An example of using metabolite profile data in this manner is 

shown in Figure 2 and in Table 2. 

In this example, a hypothetical drug is metabolized in humans via three initial 

pathways and these initial metabolites are further metabolized and/or excreted.  The 

total number of metabolites observed is seven (M1, M3, M5, M6, M7, M8, M9) from a 

total of 10 reaction pathways (some of which have more than one reaction within the 

arrow).  The structures of two metabolites not observed (M2 and M4) must be inferred 

due to the presence of their downstream metabolites.  For the terminal metabolites (M5, 

M6, M7, M8, and M9), the estimation of total body burden is straightforward and is 

merely the total dose times the percentage that each represents.  However, for the 

intermediate metabolites, an estimate of the body burden comprises not only how much 

was directly observed, but also how much was converted to downstream products.  Thus 
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for M3, this is not only the 5 mg equivalents observed in urine, but also the 20 mg 

equivalents comprised by M8 and M9, which had to arise via M3.   

For potential parallel pathways, an estimate requires including both routes, even 

though the precise route cannot be delineated.  This is illustrated by M1.  The estimate 

of body burden for M1 must include not only the downstream metabolites clearly 

attributed to arise via M1 (i.e. M6 and M7), but also the metabolite that could have arisen 

partially or wholly from a parallel pathway (M5).  Because it cannot be known how much 

M5 arose via the M1 versus M2 pathways, it can be assumed that all M5 came from M1 

for the purpose of making an estimate of body burden for M1.  And conversely, when 

estimating body burden for M2, it must also be assumed that all of M5 arose via M2.  

Finally, what is perhaps most relevant for assessing the potential for genotoxicity in this 

particular example is the estimation of the body burden of M4, a metabolite closely 

related to a reactive intermediate (quinone).  The observation of a mercapturic acid in 

excreta indicates exposure to a reactive electrophilic quinone which was not directly 

observed.  To make an estimate of the body burden to such a reactive intermediate, the 

metabolites deriving from the pathway must be summed, in this case M6 and M7 for a 

total of 35 mg equivalents.  This likely represents an overestimate, since the formation of 

M7, a glucuronide conjugate of the hydroquinone, represents a detoxification pathway 

that could reduce the amount of quinone formed from M4.  However, since 

hydroquinones and quinones are known to be readily inter-convertible through redox 

cycling, assuming that the body burden to quinone is equivalent to that of the 

hydroquinone would be most appropriate. 

Upon completion of this exercise from the radiolabel ADME data for both humans 

and rodents, total body burden estimates for metabolites of genotoxic concern are 

available for both species.  This information can then facilitate a risk assessment.  That 

is, the body burden estimates for human and rodent are considered relative to the 
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generalizations defined in Figure 1.  In addition, for each metabolite, the probability of 

exceeding an excess cancer risk of 10-5 can be calculated taking into consideration the 3 

factors described previously (see Risk Characterization for Human Genotoxic 

Metabolites). 

Case Studies 

Following, are three case examples that exemplify the application of this 

framework for the risk assessment of human genotoxic metabolites.  In the case studies 

it is assumed that the % of metabolite formed is independent of dose and duration of 

treatment.  In these case studies a 70 kg person, linear pharmacokinetics and complete 

recovery of the administered dose was assumed. 

Case Study #1 

An active pharmaceutical ingredient intended for the treatment of bipolar disorder 

is in Phase 2 clinical development.  An intermediate used in the synthesis of the active 

pharmaceutical ingredient, which is also a metabolite in human, is tested in the Ames 

assay and the in vitro cytogenetics assay using human lymphocytes (HLA) to comply 

with worker safety and transportation regulations.  This shared intermediate/metabolite 

(M5) produces positive responses in both the Ames and HLA assay.  Furthermore, two 

human metabolites downstream of M5 (that is, M2 and M1) are also suspect genotoxic 

metabolites based on high structural similarity to M5.  The metabolic pathway is 

sequential: parent  M5  M2 M1. 

Based on the projected human efficacious dose (160 mg) and the highest dose 

utilized in 2 year carcinogenicity testing in mouse and rat (200 mg/kg and 12 mg/kg), the 

maximum total body burden to M5, M2 and M1 were estimated for each species (human, 

rat and mouse).  The body burden of M5 was estimated taking into consideration the % 

of M5 detected in excreta plus the % M1 and M2, which are direct downstream 

metabolites.  For example, in rat the percentages of M5, M1 and M2 were 7.3, 5.1 and 
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1.1%, respectively, therefore the body burden of M5 in rat is estimated at 13.5%.  

Similarly the body burden of M2 was estimated by adding the % of M2 detected plus the 

% of M1 detected.  The total percentage of metabolite burden, was then multiplied by the 

highest dose to which each species is exposed.  The results of these tabulations are 

presented in Table 3.  An example illustrating how the rat total body burden was 

calculated follows: 

     Total Rat Body Burden of M5 (mg/kg) = 

  (% M5 + %M2 + %M1) × (Highest Dose in Carcinogenicity Study) 

 = (1.1% + 5.1% +7.3%) ×(12 mg/kg/day) 

 =(13.5%) × (12 mg/kg/day) 

 =  1.620 mg/kg/day 

After body burden estimates were determined for each metabolite of concern for 

each species, an assessment of risk was conducted by considering the generalizations 

established from the risk characterization model (Figure 1).  In addition, for each 

metabolite the probability of not exceeding an excess cancer risk of 10-5 was calculated. 

For metabolites, M5, M2 and M1, the total burden of exposure in human is 0.286, 0.251 

and 0.251 mg/kg/day, respectively (Table 3).  In the case of M5, the total body burden in 

rat and mouse at the highest dose used in 2-year carcinogenicity testing is estimated at 

1.620 and 49.6 mg/kg respectively.  For M2, the exposure estimates are 0.744 and 46.4 

mg/kg, respectively for rat and mouse.  For M1, the exposure estimates are 0.132 and 

38.0 mg/kg, respectively.  At this point it should be noted that only the mouse has 

exposures for the three metabolites that are >10 mg/kg/day.  Therefore, the maximum 

ratio of animal (i.e., mouse) exposure over human exposure is 173X, 185X and 151X for 

M5, M2 and M1 respectively.  Using these estimates of total body burden to M5, M2 and 

M1 the probability of controlling excess cancer risk to 10-5 was estimated to be ~95% 

based on a dose-specific calculation in a relevant rodent species.  In this case, human 
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exposures were well in excess of 1.5 µg/day, while exposures in the rat carcinogenicity 

study were less than 10 mg/kg/day.  The high probability of not exceeding an excess 

cancer risk of 10-5 was largely related to the high exposures achieved in the mouse 

carcinogenicity studies, which provides a high degree of confidence in the ability to 

qualify the carcinogenic potential of these metabolites in the non-clinical testing. 

Case Study #2 

An active pharmaceutical ingredient is in Phase 2 clinical development for the 

treatment of hypercholesterolemia.  The human ADME study revealed two simple 

quinoline metabolites, M3 and M4 (Figure 3).  Both M3 and M4 were also observed in rat 

and mouse ADME studies.  

Based on the projected human efficacious dose (60 mg) and the highest dose 

utilized in 2 year carcinogenicity testing in mouse (300 mg/kg/day) and rat (400 

mg/kg/day), estimates of the maximum total body burden to M3 and M4 were 

determined for each species (human, rat and mouse).  The body burden of M3 was 

estimated taking into consideration the % of M3 detected in excreta plus the % 

metabolite for all metabolites in excreta which are directly downstream of M3.  This total 

percentage of metabolite burden, which represents M3+M4+M5+M21+M22, was then 

multiplied by the highest dose to which each species would be exposed.  After body 

burden estimates were determined for each metabolite of concern for each species, an 

assessment of risk was conducted by considering the generalizations established from 

the risk characterization model (Figure 1).  In addition, for each metabolite the probability 

of not exceeding an excess cancer risk of 10-5 was calculated. 

 For M3 and M4, the total burden of exposure in human was estimated to be 

0.164 and 0.102 mg/kg/day, respectively (Table 4).  In the case of M3, the total body 

burden in rat and mouse at the highest dose used in 2-year oncogenicity testing is 

estimated at 90.4 and 88.5 mg/kg respectively.  For M4, the exposure estimates are 90.4 
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and 77.8 mg/kg, respectively for rat and mouse.  Therefore, the maximum ratio of animal 

exposure over human exposure is 550X and 883X for M3 and M4 respectively.  Using 

the estimates of total body burden to M3 and M4 the probability of controlling excess 

cancer risk to 10-5 was determined to be >95%.  In this case, given that human 

exposures were well in excess of 1.5 µg/day, the high probability of not exceeding an 

excess cancer risk of 10-5 was primarily related to the high exposures achieved in the rat 

and mouse carcinogenicity studies, which provide a high degree of confidence in the 

ability to qualify the carcinogenic potential of these metabolites in the non-clinical testing. 

Case Study #3 

An active pharmaceutical ingredient intended for the treatment of GERD is in 

Phase 2 clinical development.  A human metabolite (M22) which had previously been 

assigned as an amine metabolite was determined to be a nitroalkane metabolite (Figure 

4).  This structurally alerting metabolite represented 10% of excreted drug in human and 

was observed in substantially lower quantities in mouse excreta (2.3%) and was not 

detected in rat.  Based on the projected human efficacious dose (10 mg) and the highest 

dose intended for the 2 year carcinogenicity testing in mouse (100 mg/kg), estimates of 

the maximum total body burden of M22 were estimated for each species (human and 

mouse).  The body burden of M22 was estimated by taking into consideration the % of 

M22 detected in excreta.  There were no downstream metabolites of M22 identified in 

either human or mouse.  The total percentage of metabolite burden, was then multiplied 

by the highest dose to which each species will be exposed.  The results of these 

tabulations are presented in Table 5. 

For M22 the total body burden of exposure in human and mouse is 0.014 mg/kg 

and 2.3 mg/kg respectively (Table 5).  Therefore, the maximum ratio of animal exposure 

over human exposure is estimated to be ~164X.  Based on the body burden estimates 

an assessment of risk was conducted by considering the generalizations established 
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from the risk characterization model (Figure 1).  In addition, the probability of not 

exceeding an excess cancer risk of 10-5 was calculated.  In this case study, none of the 

criteria established in the generalizations were met.  That is, human exposures were in 

excess of 1.5 µg/day, exposure in the mouse oncogenicity study was less than 10 

mg/kg/day, and there was less than 1000X margin of animal exposure to human 

exposure.  Accordingly, in this case the probability of not exceeding an excess cancer 

risk of 10-5 was only 84% as opposed to the prior two cases in which at least one risk 

criterion was met.   

In this case study, there was a lower probability of not exceeding a 10-5 excess 

cancer risk.  The model developed in this paper may not be sufficient to demonstrate 

safety of the metabolite.  However, this model should be viewed as one of many tools for 

assessing metabolite safety.  More information could be gathered about the metabolite 

to make a “weight of evidence” determination of its genotoxic potential.  Additional safety 

studies on a case-by-case basis could be performed directly with the metabolite or the 

metabolite could be “spiked” into the dose solution to ensure adequate exposure.  

However, it should be noted that there are often separate ADME issues associated with 

direct administration of a metabolite, since the disposition of the metabolite may be 

vastly different when it is administered directly versus when it is generated from a parent 

drug in situ.  Thus, other risk-benefit assessment approaches must be considered as 

well.   

Discussion 

The role of metabolism in the generation of reactive electrophiles that are 

responsible for forming covalent bonds to nucleic acids and causing mutation and 

ultimately carcinogenicity is well established for many chemicals.  Therefore, most 

pharmaceutical sponsors start working in the early stages of drug discovery to predict 

and avoid the potential for the formation of highly reactive and possibly genotoxic 
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metabolites in vivo.  In addition, most sponsors employ genotoxicity screening assays 

using a metabolic activation system (i.e. Aroclor induced rat liver S9) to identify drug 

candidates with potential genotoxic metabolites.  The ICH guidance requires the conduct 

of an in vivo genotoxicity test and in vitro genotoxicity tests with an activation system 

(ICH 1996, 1997c) with the intent to assess the genotoxic potential of the active 

pharmaceutical ingredient and its respective metabolites prior to initiating clinical 

development.   

Despite these efforts, the ability of both in vitro and in vivo test systems to model 

human metabolites of interest can be variable and thus limit the ability to adequately 

conduct genotoxicity and carcinogenicity risk assessment in certain cases.  Recently an 

International Workshop of Genotoxicity Tests (IWGT) focused on the limitations of the 

current approach to genotoxicity testing, some of which likely account for the failure of 

the standard test systems to detect several suspect human carcinogens (Ku et al. 2007).  

Important limitations of in vitro test systems that were highlighted in the output from the 

workshop include the fact that non-CYP enzymes may not be active due to absence of 

necessary cofactors and that co-factor supplementation may not overcome the issue 

due to lack of cell permeability (Glatt 2000; Glatt and Meinl 2005; Mulder et al. 1977).  

That is, reactive metabolite formation may only occur extracellularly and therefore limit 

the ability to react with DNA.  It was also noted that CYP enzymes from rat and human 

differ in their substrate specificity and the reactions they catalyze.  Furthermore, it is 

important to note that Aroclor treatment of rats used to prepare S9 creates an unnatural 

complement of CYP enzymes, with high induction of CYP1A and B, and minor 

increasing or decreasing effects on other CYPs (Guengerich et al. 1982).  These factors 

are likely to contribute to differences observed in the qualitative and quantitative profiles 

of drug metabolites formed in studies comparing human liver S9 to Aroclor-induced rat 

S9 (Obach and Dobo 2008).  Therefore, multiple factors may limit in vitro hazard 
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identification of genotoxic metabolites.  In vivo, the limitations of the assay are likely 

related to the pharmacokinetics of the test compound and its possible species-, sex- and 

tissue-specificity. 

Despite the rigorous assessment of genetic safety required to support clinical 

development, given the limitations cited above, it seems prudent to consider the 

adequacy of the testing as information regarding human metabolites becomes available.  

A number of publications have focused on recommendations for a framework for 

assessing the safety of metabolites (Baillie et al. 2002; Smith and Obach 2005).  Most 

recently the FDA issued a guidance document (USFDA 2008b) and several 

pharmaceutical sponsors have outlined their approaches to addressing this important 

issue (Humphreys and Unger 2006; Luffer-Atlas 2008).  It should be noted that the FDA 

guidance does provide recommendations concerning genotoxicity testing of human 

metabolites that exceed a 10% relative abundance threshold (USFDA 2008b).  To date 

there has been no framework recommended to facilitate a risk assessment for confirmed 

human genotoxic metabolites.  Since the identification of such metabolites is particularly 

challenging when realized in the later stages of drug development, it is desirable to have 

a framework for conducting a carcinogenic risk assessment.  Here we propose a risk 

assessment strategy for human genotoxic metabolites that relies on data generated 

during the conduct of rodent and human radiolabeled ADME studies.  The radiolabeled 

ADME studies provide a complete, comprehensive, and quantitative profile of 

metabolites, which allows the total body burden of any given metabolite to be estimated.  

This absolute exposure data is necessary to support the cancer risk assessment for 

genotoxic metabolites.  That is, any metabolite of genotoxic concern confirmed to be 

present in both humans and rodents can be evaluated using this model to determine if 

there is a favorable assessment of human risk.  While this document may provide a 

model for carcinogenic outcomes of genotoxic metabolites, it does not address other 
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toxicities that may be associated with a genotoxic species such as reproductive toxicity.  

Therefore, this model should only be used to address potential carcinogenicity and other 

toxicities should also be addressed by the available guidances.  

The method proposed incorporates aspects of prior approaches for impurities in 

food or pharmaceuticals where the genotoxic hazard is solely known for the impurity, i.e. 

there is no data on carcinogenicity (Fiori and Meyerhoff 2002; Kroes et al. 2004; Müller 

et al. 2006).  The risk assessment/management approaches for genotoxic compounds 

are difficult to validate given the low acceptable occurrence for the effect (e.g. 1 in 

100,000 excess cancer risk) and the limited data available (e.g. Ames assay results).  

Therefore a conservative philosophy is typically applied given the uncertainties in the 

outcome.  In general, the probability of exceeding an excess cancer risk of 10-5 is 

estimated by referencing the cancer potency curve for rodent carcinogenicity studies, 

which was derived by simple linear extrapolation from carcinogenic potencies giving a 

50% tumor incidence (TD50) over background for more than 700 carcinogens (Fiori and 

Meyerhoff 2002; Kroes et al. 2004; Müller et al. 2006).  Several generalizations were 

defined to facilitate the risk assessment of case studies, including an acceptable 

absolute exposure limit of 1.5 µg/day for lifetime exposure in humans (see Table 1 and 

2).  The 1.5 µg daily dose is consistent with the limit established for lifetime daily intake 

of a genotoxic impurity in active pharmaceutical ingredients (CHMP 2006; Müller et al. 

2006).  It is important to note that the derivation of the limit is dependent on conservative 

assumptions including no threshold for toxicity, the shape of the dose-response curve for 

all genotoxic carcinogens is linear, and the genotoxic compound could be a highly potent 

carcinogen.  Data used to extrapolate to a risk associated with 10-5 is based on the most 

sensitive species, and on the most sensitive target tissue.   

Furthermore, the daily exposure may need to be adjusted for those 

pharmaceuticals administered over a less than lifetime duration.  In the case of 
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genotoxic impurities it has been recommended that the duration of treatment be 

accounted for in establishing an allowable limit, that is staged TTCs have been defined 

for short-term exposure conditions (Müller et al. 2006).  This is because carcinogenicity 

is a result of an accumulation of exposure over a lifetime.  Although all of the case 

studies presented are drugs intended for chronic use, a staged TTC approach could be 

incorporated into the risk assessment framework for genotoxic metabolites to account for 

treatment scenarios that are less than chronic (70 years) duration.  This would increase 

the probability of not exceeding an excess cancer risk of 1 in 100,000 in humans (PA) for 

a given exposure.  Thus an adjustment could be made on Table 1 to reflect the change 

from long-term to short-term exposure to the genotoxic metabolite. 

In the evaluation of these case studies, it became apparent that an exposure of 

1.5 µg/day, associated with an excess cancer risk of 10-5, is not a practical limit for 

metabolites.  In none of the industry case studies evaluated to date, including those 

presented herein, have metabolites present at such a low total body burden been 

identified and quantitated.  This is associated with the fact that radiometric HPLC, which 

is used to quantitate metabolites, struggles to reliably quantitate metabolites that 

represent less than 5% of the radiolabeled material (Smith and Obach 2005).  Therefore, 

even for low dose drugs, 10 or 1 mg/day, the limit for quantitating metabolites would be 

500 or 50 µg/day, respectively.  Due to this limitation, the model as proposed would not 

be useful for risk assessment of unique human metabolites. 

The exposure limit of 1.5 µg/day was selected as an extension of the approach 

recommended for genotoxic impurities; however, there are differences in relation to 

genotoxic metabolites which may allow for a different risk management outlook.  In the 

case of genotoxic impurities in active pharmaceutical ingredients the acceptable excess 

cancer risk is exceptionally low because the impurities in the drug product provide no 

benefit to the patient.  In contrast, drug metabolism is associated with desirable drug 
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properties such as pharmacokinetics, pharmacology and clearance.  Also, exposure to 

the metabolite cannot be reduced for a given drug substance whereas strategies in 

manufacturing can be developed that can effectively reduce impurity levels.  Therefore 

exposure to the metabolite is part of the risk/benefit assessment for each molecule. 

Unlike other risk assessments, the proposed method for genotoxic metabolites 

takes advantage of the possibility that exposures in rodent carcinogenicity testing may 

be relatively high compared to human exposure.  This additional factor, which is the 

assessment of total body burden in rodents, was incorporated into the risk assessment 

framework to assess the probability that the metabolite exposure in a 2-year rat or 

mouse carcinogenicity assay is high enough to detect an oncogenic and/or tumorigenic 

signal.  Based on our initial evaluation of case studies, it appears that the total body 

burden to genotoxic metabolites in rodents has a greater influence on the outcome of the 

risk assessment than other factors.  Therefore, it seems that the useful aspect of this 

methodology is that it allows one to understand if the amount of metabolite formed in the 

rodent is sufficient to have confidence that a negative outcome in a carcinogenicity study 

in essence “qualifies” the metabolite(s) of concern.   

This model can be most useful for study design of a carcinogenicity study if the 

genotoxic metabolite was discovered early in development.  This timing makes it 

possible that the model can be used proactively when selecting doses for the cancer 

bioassays.  That is, assuming that there is knowledge of a human metabolite of 

genotoxic concern prior to initiation of the study and that the metabolite is also formed in 

rodent, then a sponsor could select doses that would provide confidence in metabolite 

qualification (e.g. ≥ 10 mg/kg/day exposure to metabolite or other criteria).  Alternatively, 

if the model is not well defined prior to initiation of the carcinogenicity studies, it is 

possible that a key metabolite might not be adequately addressed and the development 

program will carry a risk of needing to do additional studies after submission. 
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The described model has limitations which may diminish its application in some 

cases.  For example, if a metabolite of concern is discovered at low levels in animals 

and humans (1-5%), the model may indicate a concern when none exists.  This is 

because in practice the high dose in animals is more likely to result in a favorable 

outcome than a low dose in humans.  In most instances one will not be able to detect 

levels as low as 1.5 µg/day in excreted material.  However, low human exposure levels 

of metabolites are typically not of concern and therefore the model should be applied 

when an issue is triggered by application of the available regulatory guidances.  Also, 

when a metabolite is related to a drug for an unmet medical need, one must also 

consider the benefit of the medication when considering the risks of the metabolite.  A 

precedent for this perspective can be found in the FDA Guidance on Safety Testing of 

Drug Metabolites, which exempts drugs for life-saving diseases from the proposed 

recommendations (Smith and Obach 2005).  Furthermore, the patient population is 

another consideration and increased conservatism may be applied to certain groups that 

are more susceptible to cancer. 

There are also several assumptions that a person should be aware of when 

applying the model.  Many of the assumptions are inherent to the model as described in 

the methods such as the probability a genotoxic compound is also carcinogenic or the 

sensitivity of a carcinogenicity study to detect a tumor.  Another assumption is the 

metabolite once formed will penetrate the target tissue before it is further metabolized.  

Furthermore, the carcinogenicity potency database from which the model was based on 

contains carcinogenic compounds that are nongenotoxic.  If genotoxic compounds are 

more potent carcinogens than nongenotoxic compounds resulting in a higher TD50 for 

nongenotoxic carcinogens, then this may overestimate the upper dose needed to qualify 

a genotoxic metabolite.  Thus a lower dose may be appropriate to qualify genotoxic 

metabolites in animals.  Furthermore, the model was developed from known carcinogens 
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which undergo their own metabolism.  The mechanism of action for these carcinogens is 

in many instances based on their own genotoxic metabolites.  A more accurate 

description would use the body burden of the genotoxic metabolite for each carcinogen, 

but this dataset is limited.  This model should be taken in context of risk management, 

where despite its limitations, is still a good model for making decisions in certain 

instances.  Therefore, good judgment, considerations of other guidances, and 

understanding the risk/benefit of the medication is essential before use of the model. 

While this model derives an acceptable margin of safety (e.g. 1000x), it is 

noteworthy to highlight the differences between its assumptions and guidance typically 

used in pharmaceutical development to derive a safe starting dose in volunteers 

(USFDA 2005).  The USFDA guidance uses NOAELs derived from nonclinical species 

for the drug substance and converts these levels to human equivalency doses (HEDs) 

by taking into account allometric scaling differences between animals and humans.  A 

safety factor is then applied to the HED to derive a safe human dose and allow for an 

appropriate margin of safety.  In this case, there is an assumption of a threshold, which 

allows for a smaller margin.  A probabilistic approach was applied to genotoxic 

metabolites in a similar fashion as the TTC.  Allometric scaling was not applied to the 

derivation of the TTC because it was risk-based and a large degree of conservative 

assumptions were already made in its derivation (Kroes et al. 2004; Munro et al. 1999).  

While some of the generalizations for genotoxic metabolites expand upon the TTC used 

for impurities, there was no reason to differ in this assumption as well. 

In summary, a framework has been proposed which may be useful for 

conducting a risk assessment of human genotoxic metabolites.  The method, as it has 

been applied here, is intended to be used in the later stages of development when 

exposures to metabolites are quantitated through radiolabel ADME studies in both 

human and rodents.  The approach is practical in that it relies on data that is required to 
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be generated during the normal process of drug development.  The assessment of case 

studies to date suggests that the conservative nature of the model makes it impractical 

for conducting a risk assessment for any unique human genotoxic metabolites.  The TTC 

was developed for impurities, which is based solely on developing a dose that would 

result in a negligible risk to humans for most compounds if they turned out to be 

carcinogenic.  Solely applying the TTC for metabolites of genotoxic concern is not only 

impractical but it also does not take into account that metabolites are part of the 

risk/benefit equation.  In cases wherein metabolites of concern are present in rodents, 

the risk assessment is useful, providing an understanding of the adequacy of metabolite 

representation in rodent carcinogenicity studies.  This model may be most useful for 

managing the challenges associated with identification of a genotoxic human metabolite 

in the later stages of drug development.  It may also be useful for non-clinical study 

design from early discovery of a genotoxic metabolite. 
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Tables 

Table 1.  Total probability of not exceeding a 1 in 100,000 cancer risk for a genotoxic 
metabolite. 

 
 
a.  The model was adapted from Fiori and Meyerhoff (2002) which analyzed the 
carcinogenic potencies of 705 animal carcinogens. 
 
b.  Animal preclinical exposure is the total body burden to the metabolite estimated in the 
2 year oncogenicity study.  It can be estimated by using short-term radiolabeled animal 
studies in the same species.   
 
c.  Human exposure is the total body burden to the metabolite estimated in humans.  It 
can be estimated by using radiolabeled clinical studies. 
 
d.         Where combination of exposure in animals and humans results in a probability 
below 85 percent of not exceeding a 1 in 100,000 excess risk of cancer.     
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Table 2.  Calculated body burden estimates for metabolites for a hypothetical example 
(Refer to the accompanying metabolic tree in Figure 2). 
Metabolite % in 

Excreta 
Sum of: % of 

Dose 
Body 
Burden 

Phenol M1 20 M1+M4+M6+M7+M5 70 70 mg eq. 
N-Desmethyl M2 0 M5 15 15 mg eq. 
Hydroxy M3 5 M3+M8+M9 25 25 mg eq. 
Hydroquinone M4 0 M6+M7 35 35 mg eq. 
N-Desmethyl Phenol M5 15 M5 15 15 mg eq. 
Mercpaturic Acid M6 5 M6 5 5 mg eq. 
Glucuronide M7 30 M7 30 30 mg eq. 
Sulfate M8 5 M8 5 5 mg eq. 
Dihydroxy M9 15 M9 15 15 mg eq. 
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Table 3.  Case Study 1 - Estimates of Total Body Burden to Genotoxic Metabolites in 
Human and Rodent. 
 
Metabolite 

 
Human 
%a 

Human Body 
Burden 
(mg/kg)b 

 
Rat 
%a 

Rat Body 
Burden 
(mg/kg)c 

 
Mouse 
%a 

Mouse Body 
Burden 
(mg/kg)c 

Parent 3.3 - 5.9 - 44.0 - 
M1 11.0 d 0.251 1.1 0.132 19.0 38.0 
M2 11.0d 0.251 6.2 0.744 23.2 46.4 
M5 12.5 0.286 13.5 1.620 24.8 49.6 
 
a.  The % of each metabolite was estimated by adding the % of the metabolite detected 
in excreta plus the % of its respective downstream metabolites detected in excreta. 
 
b.  The human body burden for each metabolite was estimated by multiplying the % of 
metabolite by the human efficacious dose (160 mg and assuming a 70 kg person). 
 
c.  The rodent body burden for each metabolite was estimated by multiplying the % of 
metabolite by the maximum daily dose used in the carcinogenicity study (200 mg/kg in 
mouse and 12 mg/kg in rat). 
 
d.  In the human ADME study M1 and M2 co-eluted, and represented a total of 11% of 
metabolite in excreta. 
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Table 4.  Case Study 2 - Estimates of Total Body Burden to Genotoxic Metabolites in 
Human and Rodent. 
 
Metabolite 

 
Human 
%a 

Human Body 
Burden 
(mg/kg)b 

 
Rat 
%a 

Rat Body 
Burden 
(mg/kg)c 

 
Mouse 
%a 

Mouse Body 
Burden 
(mg/kg)c 

Parent 5.8 - 39.0 - 36.0 - 
M3 19.1 0.164 22.6 90.4 29.5 88.5 
M4 11.9 0.102 22.6 90.4 26.0 78.0 
 
a.  The % of each metabolite was estimated by adding the % of the metabolite detected 
in excreta plus the % of its respective downstream metabolites detected in excreta. 
 
b.  The human body burden for each metabolite was estimated by multiplying the % of 
metabolite by the human efficacious dose (60 mg and assuming a 70 kg person). 
 
c.  The rodent body burden for each metabolite was estimated by multiplying the % of 
metabolite by the maximum daily dose used in the carcinogenicity study (300 mg/kg/day 
in mouse and 400 mg/kg/day in rat).  
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Table 5.  Case Study 3 - Estimates of Total Body Burden to Genotoxic Metabolites in 
Human and Rodent. 
 
Metabolite 

 
Human 
%a 

Human Body 
Burden 
(mg/kg)b 

 
Rat 
%a 

Rat Body 
Burden 
(mg/kg)c 

 
Mouse 
%a 

Mouse Body 
Burden 
(mg/kg)c 

Parent 9.0 - 29.0 - 34 - 
M22 10.0 0.014 NDd - 2.3 2.3 
 
a.  The % of each metabolite was estimated by adding the % of the metabolite detected 
in excreta plus the % of its respective downstream metabolites detected in excreta. 
 
b.  The human body burden for each metabolite was estimated by multiplying the % of 
metabolite by the human efficacious dose (10 mg and assuming a 70 kg person). 
 
c.  The rodent body burden for each metabolite was estimated by multiplying the % of 
metabolite by the maximum daily dose used in the carcinogenicity study (100 mg/kg/day 
in mouse). 
 
d.  None detected. 
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Figures 

 
Figure 1.  Generalizations / Applications of the Risk Assessment Model for Human 
Genotoxic Metabolites. 
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Figure 2.  Hypothetical example of a metabolic tree constructed from in vivo excretory 
metabolite data. 
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Figure 3.  Case Study 2 - Representation of human metabolic tree. 
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The parent and metabolites upstream of M3 and M4 are non-alerting. 
M3 and M4 are simple structurally alerting quinoline metabolites.  
All metabolites downstream of M3 and M4 quinoline (i.e. M5, M20, 
M21 and M22) are non-alerting detoxified metabolites. 
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Figure 4.  Case Study 3 - Representation of human metabolic tree. 
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In the case of case study 3, the final downstream metabolite 
observed in human excreta (M22) is structurally alerting, 
containing a tertiary nitro group. 
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      Metabolites                                 (M22) 
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TOXICOGENOMICS AND CANCER RISK ASSESSMENT:  A FRAMEWORK FOR KEY 

EVENT ANALYSIS AND DOSE-RESPONSE ASSESSMENT FOR NONGENOTOXIC 

CARCINOGENS1 

Abstract 

In order to determine a threshold for nongenotoxic carcinogens, the traditional 

risk assessment approach has been to identify a mode of action (MOA) with a nonlinear 

dose response.  The dose-response for one or more key event(s) linked to the MOA for 

carcinogenicity allows a point of departure (POD) to be selected from the most sensitive 

effect-dose or no-effect dose.  However, this can be challenging because multiple MOAs 

and key events may exist for carcinogenicity and oftentimes extensive research is 

required to elucidate the MOA.  In this study, a microarray analysis was conducted to 

determine if a POD could be identified following short-term oral rat exposure with two 

nongenotoxic rodent carcinogens, fenofibrate and methapyrilene, using a benchmark 

dose analysis of genes aggregated in Kegg pathways and Gene Ontology (GO) 

biological processes, which likely encompass key event(s) for carcinogenicity.  The gene 

expression response for fenofibrate given to rats for 2 days was consistent with its MOA 

and known key events linked to PPARα activation.  The temporal response from daily 

dosing with methapyrilene demonstrated biological complexity with waves of 

pathways/biological processes occurring over 1, 3, and 7 days; nonetheless, the 

benchmark dose values were consistent over time.  When comparing the dose-response 

of toxicogenomic data to tumorigenesis or precursor events, the toxicogenomics POD 

was slightly below any effect-level.  Our results suggest that toxicogenomic analysis 

using short-term studies can be used to identify a threshold for nongenotoxic 

                                                 
1 This chapter has been submitted to be published in:  Bercu JP, Jolly RA, Flagella KM, Baker 
TK, Romero P, and Stevens JL. (2010). Toxicogenomics and cancer risk assessment: A 
framework for key event analysis and dose-response assessment for nongenotoxic carcinogens. 
Toxicol. Sci. (Submitted). 
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carcinogens based on evaluation of potential key event(s) which then can be used within 

a risk assessment framework. 

Introduction 

 Cancer risk assessment is a process through which the risk of developing cancer 

over background can be determined following environmental exposure to a chemical 

(USEPA 2005).  Cancer dose-response assessment depends on one major assumption, 

whether or not there is a threshold-effect.  If no threshold is identified, it is assumed that 

a carcinogenic response can occur at any exposure (USEPA 2005).  This type of 

assessment utilizes a linear low dose risk assessment model from which excess risk of 

cancer over background is extrapolated to low dose levels from effects occurring in 

animals at high doses (Gold et al. 2003) or a large margin of exposure from a 

tumorigenic dose (Barlow et al. 2006).  If a threshold is assumed, the cancer risk 

assessment process typically involves identifying a point of departure (POD) from which 

an exposure level that would not cause an appreciable adverse effect (tumorigenesis) is 

estimated.  The POD is typically derived from a no-observed effect level (NOEL), or a 

lowest-observed effect level (LOEL) if a NOEL cannot be identified, and adjustments (i.e. 

uncertainty factors) are made to lower the POD to an acceptable dose (Barnes and 

Dourson 1988; Dourson 1993; USEPA 2002).   

 Nongenotoxic carcinogens are a class of carcinogens where the assumption of a 

threshold seems applicable (Klaunig et al. 2000).  According to the 2005 USEPA 

carcinogenicity risk assessment guidelines, a threshold response can be assumed for a 

nongenotoxic carcinogen if a threshold-based mode of action (MOA) can be described 

(USEPA 2005).  The MOA approach does not imply a complete understanding of 

mechanism or a detailed description of all events linked to the mechanism of 

carcinogenesis at the molecular level.  However, establishing a MOA does require 

description of one or more critical key event(s) necessary to cause cancer (Boobis et al. 
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2006).  The assumption is that the no-effect dose for a key event, often defined by a 

biochemical or morphological endpoint, can be used to establish a threshold below 

which development of cancer is unlikely.  While useful, this approach has not been 

applied extensively for rodent carcinogenicity data.  Elucidating the MOA and identifying 

key events experimentally is time-consuming since only one or a few potential key 

events can be tested at a time and a compound may have multiple MOAs each of which 

may have multiple key events.   

 Regardless of the approach to risk assessment, it is important to identify a dose-

response relationship to establish a threshold.  The benchmark dose approach is a tool 

established in the 1980’s that can be used to determine a POD for risk assessment 

(Crump 1984), and USEPA developed a draft technical document for its application 

(USEPA 2000).  In principle, a BMD is a statistical approximation of a dose 

corresponding to a defined probability that a specified response will occur.  For example 

a BMD10 (the effective mean dose necessary to produce a 10% response - referred to in 

this manuscript as BMD) and BMDL10 (the lower 95th percent confidence interval of a 

10% response on a dose-response curve - referred to in this manuscript as BMDL) are 

two common benchmark dose measures used as PODs for risk assessment.  Recent 

studies with formaldehyde show that a benchmark dose approach can be used with 

transcript profiling data, hereafter referred to as toxicogenomics, to establish BMD/BMDL 

values based on dose-response evaluation at a genomic level (Andersen et al. 2008; 

Thomas et al. 2007; Yang et al. 2007). 

 Fenofibrate and methapyrilene are two prototypical nongenotoxic rodent 

carcinogens, one with a well established MOA (fenofibrate), and another carcinogen 

where the MOA is still being elucidated (methapyrilene).  Fenofibrate is a rodent-specific 

nongenotoxic hepatocarcinogen and produces tumors in mice and rats following daily 

oral administration (Klaunig et al. 2003).  There are several key events related to the 
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MOA of tumorigenesis, including activation of the PPARα receptor, proliferation of 

peroxisomes, expression of genes involved in lipid metabolism, oxidative stress resulting 

from excessive mitochondrial oxidation of fatty acids, with resulting DNA damage, and 

perturbation of the balance between cell proliferation and apoptosis ultimately leading to 

an increased formation of tumors (Klaunig et al. 2003; Lai 2004; Yu et al. 2003).  

Methapyrilene oral administration to rats resulted in hepatocellular carcinomas and 

cholangiocarcinomas (Lijinsky 1984; Lijinsky et al. 1980).  With some exceptions 

(Althaus et al. 1982; Ashby et al. 1988; Turner et al. 1987) the majority of available data 

suggest that  methapyrilene is not mutagenic (Iype et al. 1982; Lee et al. 1994; Mirsalis 

1987; Oberly et al. 1993; Steinmetz et al. 1988).  Although the MOA for methapyrilene 

tumorigenesis is not entirely clear, it is related to a sustained proliferative response as 

an adaptation to chronic periportal injury and cell death (Cunningham et al. 1995; Mercer 

et al. 2009).   

 In this study, these two compounds were tested to determine if toxicogenomic 

analyses could be used to establish response thresholds (BMD/BMDL) for PODs for 

cancer risk assessment and compared the results to more conventional methods.  The 

high dimensional data set for fenofibrate and methapyrilene microarrays will be 

simplified to biological processes and pathways based on public ontologies.  In the case 

of fenofibrate, the resulting biological processes should correspond with the established 

MOA for rodent carcinogenicity.  Even though methapyrilene does not have an 

established MOA, BMD/BMDL values can be determined.  Further, the identified 

toxicogenomic POD should be below tumorigenic doses and precursor events to 

carcinogenicity.  A toxicogenomics approach to risk assessment for nongenotoxic 

carcinogens should provide a threshold for all potential key events necessary for the 

development of cancer. 
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Methods 

Peroxisomal β-Oxidation (PBox) Assay 

All reagents were obtained from Sigma Aldrich (St. Louis MO).  Animals were 

administered fenofibrate (2 animals per dose group) by oral gavage at doses of 0 

(vehicle control - 10% acacia), 1, 3, 10, 30, 100, 300, 600, and 1,000 mg/kg over four 

days.  Liver samples were collected at necropsy, snap frozen in liquid nitrogen and 

stored at approximately 70°C for analysis.  For protein assessment and peroxisomal β-

oxidation (PBox), samples were homogenized in 250 mM Sucrose, 5 mM EDTA, and 20 

mM Tris HCl buffer (pH 7.4) and centrifuged.  Sample protein content was determined 

using the Coomassie® Plus Protein Assay (modification of the Bradford methodology) 

using bovine serum albumin (BSA).  Individual sample homogenates were combined 

with an aliquot of Triton X-100 (1% v/v final), vortexed, centrifuged, and the resulting 

supernatant was placed on ice.  PBox reaction mixture was prepared on the day of 

assay and was comprised of 0.05 mM HEPES (pH 7.4), 20 mM NAD, 330 mM DTT, 10 

mM CoA, 1 mM FAD, 15 mg/mL BSA and 100 mM KCN.  Sample supernatant and PBox 

reaction mixture were added to a Spectramax microtiter plate (molecular Devices, 

Sunnyvale CA) and the reaction was initiated by the addition of palmitoyl CoA to each 

well.  The microtiter plate was then placed into a plate reader (set at 37°C) and the 

optical density (OD) was read at 340 nm.  The rate of the reaction was calculated from 

the steepest linear portion of the reaction curve using an extinction coefficient of 6.22 x 

103 M-1 cm-1 for NADH.   

Animal Studies 

Fenofibrate or vehicle (1% carboxymethylcellulose sodium, 0.5% sodium lauryl 

sulfate, 0.085% Povidone [Sigma, St. Louis, MO]) were delivered to female rats (n=3) in 

two daily oral gavage doses of 30 or 1000 mg/kg/day.  Samples of the left lateral lobe of 

the liver (~100 mg) were collected in RNAlater™ (Ambion, Austin, TX) 4 hours after the 
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second gavage dose.  Total RNA was extracted from the liver section homogenized in 

RNA STAT-60 (Tel-Test, Friendswood, TX) and purified with RNeasy columns (Qiagen, 

Ca).  RNA preparation, sample hybridization, chip washing, and chip scanning were 

performed as described in the Affymetrix GeneChip® Expression Analysis Technical 

Manual (Revision 1) (http://www.affymetrix.com/index.affx).  For methapyrilene, a 

dataset collected by a multiorganizational consortium sponsored by the Hepatotoxicity 

Working Group of the International Life Sciences Institute, Health and Environmental 

Sciences Institute (ILSI HESI) was used (Waring et al. 2004).  The oral gavage doses in 

the study for methapyrilene were the vehicle control, 10 mg/kg/day and 100 mg/kg/day 

over a period of 1, 3, and 7 days.  Further details of the experimental procedure were 

described in Waring et al. 2004.  Raw methapyrilene microarray data was downloaded 

from ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/) (Brazma et al. 2003).   

Microarray Analysis 

RNA extracted from liver samples treated with fenofibrate and methapyrilene 

were analyzed using RGU34A and the MAS5.0 algorithm; chips were checked for quality 

control statistics using Gene Expression Counsel.  Only the samples that were within 

bounds of the quality control statistics were used.  Signal data was normalized based on 

a log2 (log base 2) transformation consistent with prior methodologies (Andersen et al. 

2008; Yu et al. 2006).  Following data transformation, the large dimensionality (8,799 

probe sets total) of data was reduced using one way ANOVA  p ≤ 0.05 as a significant 

change and the Benjamini and Hochberg method for multiple testing correction using 

BMDExpress (v1.3) (Benjamini and Hochberg 1995; Yang et al. 2007).  Heatmap 

visualization of the significant genes were generated using the TIGR Multiexperiment 

Viewer (Saeed et al. 2006; Saeed et al. 2003).  This Heatmap included hierarchical 

clustering and Euclidean distance to measure differences between responses.  The log2 

ratio change over background was used to construct the Heatmap. 
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Benchmark Dose Calculations 

The benchmark dose analysis was performed on the significantly perturbed 

genes using the BMDExpress (v1.3), which generates a BMD and BMDL (Yang et al. 

2007).  Since each study had only three doses (including vehicles), only the 1° and 2° 

(polynomial) curve fitting models were applied and the best fitting model was selected 

based on the nested-chi squared test.  The benchmark dose analysis for the PBox assay 

was performed using BMDS (v2.0) available online 

(http://www.epa.gov/ncea/bmds/dwnldu.html).  The output from the best fitting 

continuous model was reported following draft guidance from the USEPA (USEPA 

2000).   

Gene Ontology and Kegg Pathway Analyses 

Two ontologies were analyzed to generate biological processes and pathway 

information from significantly changes genes:  Gene Ontology (GO) 

(http://www.ebi.ac.uk/GOA/) and Kegg Pathway 

(http://www.genome.jp/kegg/pathway.html) (Ashburner et al. 2000; Kanehisa and Goto 

2000; Kanehisa et al. 2006).  The analysis was performed using DAVID (Database for 

Annotation, Visualization, and Integrated Discovery), which generates an EASE score or 

modified Fisher’s Exact Test for each term; a cutoff of p ≤ 0.1 was considered significant 

(Dennis et al. 2003; Huang da et al. 2009).  The GO analysis focused mainly on 

biological processes as it seemed the most relevant for evaluation of key events.  The 

highest hierarchical level (DAVID category - GOTERM_BP_1) was chosen to facilitate 

data reduction.  This level contains all genes that exist in lower hierarchical levels; thus, 

the risk assessment based on BMD/BMDL calculations would be the most 

comprehensive.  For each significant Kegg Pathway and GO term, a median BMD and 

BMDL and lower 95th percentile BMD and BMDL were calculated.   
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Results 

Fenofibrate  

Prior to toxicogenomic analysis, a dose-response study was conducted to identify 

a low and high dose for further evaluation (Figure 1).  PBox is a biochemical measure of 

a biological key event (peroxisome proliferation) for liver carcinogenicity in rodents 

(Klaunig et al. 2003) and a precursor event that is necessary for the development of 

cancer.  Doses greater than 10 mg/kg produced a significant increase (13-665%) in 

PBox activity over background.  Cancer risk assessments are often based on rodent 

carcinogenicity studies that employ a low and high dose design, along with controls.  To 

approximate this design, we chose the 30 and 1,000 mg/kg doses for microarray 

analysis of liver transcript profiles.   

Fenofibrate dosing significantly altered signals for 41 probe sets out of 8,799 

over the two doses (Table 1).  A visual inspection of these genes showed that most were 

involved with activation of fatty acid metabolism and peroxisome proliferation consistent 

with the putative mechanism of fenofibrate.  Hierarchical clustering of the individual 

animal data showed dose-dependent increases in expression of many of the genes in 

the latter categories; the highest fold-increase was seen with mitochondrial acyl-CoA 

thioesterase 1 (Figure 2).  Since an increase or decrease in a single gene may not 

constitute a key event, we calculated the BMD and BMDL values for each significantly 

changed probe set as a measure of variability (Figure 3).  While there were a large 

range of BMD values, the majority of the genes had BMDs (~70%) or BMDLs (~80%) 

less than 10 mg/kg/day.  Interestingly, only one of the 4 genes with the highest BMD 

value is linked to the presumed MOA for fenofibrate (increase peroxisomal and 

mitochondrial fatty acid metabolism), carnitine palmitoyltransferase 1B; for the other 

three (MAXdimerization protein, HSP 27 and cell-death induced fragmentation factor) 

the linkage is less obvious.  These genes may be a result of cell injury due to off-target 
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pharmacology at higher dose levels or effects observed (e.g. stress response) at a 

higher level of PPARα activation.   

Two different approaches were used to reduce the dimensionality:  Kegg and GO 

analyses.  The pathways identified by these analyses corresponded well with the 

established MOA for fenofibrate.  Kegg analysis identified those biochemical pathways 

significantly perturbed based on the number of genes in the pathway with a significant 

change in expression (Table 2).  The pathways most affected following fenofibrate 

exposure were fatty acid metabolism; PPAR signaling pathway; and valine, leucine and 

isoleucine degradation.  The highly significant GO term impacted was also related to 

metabolic processes (Table 3).  There was a tight range for calculated BMD and BMDL 

values using Kegg and GO analyses.  The range for the lower 95th percentile BMDLs, 

which are the most relevant values to determine a POD, was 2-4 mg/kg/day. 

Methapyrilene 

 Having tested the approach with fenofibrate, we repeated the analysis using a 

dataset for methapyrilene (Waring et al. 2004), a well known rodent hepatocarcinogen, 

but with a less characterized MOA.  The number of genes affected by methapyrilene 

was greater than fenofibrate and increased over time (Figure 4).  After 1, 3, and 7 days 

of treatment, 210, 393, and 1,175 probe sets, respectively, were significantly changed (p 

< 0.05) over the two doses.  The number of significantly perturbed genes increased from 

1 to 3 days of treatment, and even further by 7 days.  

Both Kegg and GO analyses were again used to reduce the complexity and 

determine BMD/BMDL values.  The number of Kegg pathways significantly perturbed 

increased over time.  Only one pathway, ribosomal protein production, was changed at 

all time points (Figure 5A).  Other significant pathways following 7 days of exposure 

were related to metabolism, such as P450 metabolism, PPAR signaling pathway, 

arachidonic acid metabolism, cysteine metabolism, and androgen/estrogen metabolism.  
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GO analysis revealed a qualitatively similar pattern with biological processes changing 

over time (Figure 5B).  The exception was genes related to metabolic process which was 

consistent at all time points, and this correlated well with the large degree of metabolic 

pathways perturbed in the Kegg analysis.  Both Kegg and GO results are consistent with 

a model in which different biological processes and pathways, which likely include key 

events, are changed in ‘waves’ with different time-dependence.  To determine if these 

differences across time points impacted the POD, the median and lower 95th percentile 

BMD and BMDL values were calculated for each time point for significant Kegg and GO 

terms.  The BMD and BMDL values for Kegg (Figure 6A) and GO (Figure 6B) analyses 

were similar (within a factor of 2 or less for median and lower 95th percentile averages) at 

all time points.  The BMD and BMDL values for Kegg (Table 4) and GO (Table 5) 

analyses following seven days of exposure, the time point where liver injury was 

observed (Waring et al. 2004), were within a tight range and the values were similar 

across Kegg and GO results.  The range for the lower 95th percentile BMDLs was 7-53 

mg/kg/day. 

Discussion 

 Increasing public demand for cancer risk assessments for thousands of 

chemicals has  important economic and health consequences (Foth and Hayes 2008; 

Williams et al. 2009).  Elucidating mechanisms of carcinogenesis can inform these risk 

assessments, but is time and resource intensive.  Recent advances using toxicogenomic 

analyses provide new opportunities for cancer risk assessment.  Machine learning 

techniques, based on training set of compounds with known MOAs, can discriminate 

between genotoxic and nongenotoxic agents (Ellinger-Ziegelbauer et al. 2005; Fielden et 

al. 2007; Nie et al. 2006; Uehara et al. 2008).  In addition, adaptation of standard dose-

response methodology to toxicogenomic analyses allows thresholds to be set based on 

BMD/BMDL values for biological processes using well developed ontologies (Andersen 
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et al. 2008; Thomas et al. 2007).  The latter approach is attractive since it does not 

require a training set of compounds and can be applied using accepted methodologies 

to define thresholds.  This dose-response approach is also ideal for assessing risk for 

nongenotoxic carcinogens using a MOA framework based on current guidances (Boobis 

et al. 2006; USEPA 2005).  Unfortunately, risk assessments for suspected nongenotoxic 

agents often default to a very conservative linear low dose approach since key events 

cannot be identified.  To address this problem, methodology described by Anderson et 

al. (2008) was extended to derive BMD/BMDL values for two nongenotoxic carcinogens 

and establish PODs for cancer risk assessment. 

Applying Systems Toxicology Approaches to a MOA Framework for Risk Assessment 

The PODs for both fenofibrate and methapyrilene derived using both a systems 

approach and more standard endpoints are shown in Figure 7.  In both cases, the 

systems approach resulted in a conservative threshold, with good agreement to those 

derived from standard endpoints.  For example, with fenofibrate and methapyrilene, the 

lowest BMDL from Kegg and GO analyses (from the lower 95th percentile of both 

ontologies) are below the tumorigenic and precursor threshold estimated from actual 

carcinogenicity data.  Although, it should be noted that these endpoints are subject to 

the same caveats applied to standard endpoints, e.g. they may be species specific and 

not be relevant for human carcinogenicity (Klaunig et al. 2003; Lampe and Kammerer 

1990; Mirsalis 1987), the analysis illustrates the value of toxicogenomic analyses for 

dose-response assessment of nongenotoxic carcinogens.  Additional validation is 

required, but this approach is informative for cancer risk assessment because limits of 

exposure for nongenotoxic carcinogens can be defined without a known MOA.   

The toxicogenomic POD is conservative since the analysis includes all perturbed 

pathways.  Nevertheless, this approach will result in a higher estimate compared to 

linear low dose extrapolation.  Methapyrilene serves as a good example since it has a 
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cancer potency value (e.g. TD50) established.  For example, using the linear low dose 

approach (Sawyer et al. 1984) the exposure translating to a 1 in 1 million excess cancer 

risk for methapyrilene, calculated from the TD50 of 9 mg/kg/day 

(http://potency.berkeley.edu/), is a risk specific dose of 1 µg/day.  However, the 

calculated acceptable daily intake (ADI) for methapyrilene using the toxicogenomic POD 

(7 mg/kg/day) and a 1000-fold uncertainty factor (10x for interindividual variability; 10x 

for interspecies variability; and 10x to adjust for chronic exposure - typical uncertainty 

factors used in risk assessment (USEPA 2002)), is 490 µg/day, i.e. 500-fold higher than 

that calculated from linear extrapolation.  This difference in ADI is inherent to a threshold 

vs. a linear low dose extrapolation method and is not specific to the systems approach 

described herein.    

Strengths and Weakness of a Systems Approach 

This approach has a number of underlying assumptions that are worth 

discussing.  The first important assumption in the method is that key event(s) linked to 

tumorigenesis are reflected by altered gene expression.  This seems a reasonable 

assumption since it is hard to imagine a MOA for tumorigenesis that does not involve 

changes in gene expression.  For example, oxidative stress, DNA damage, and 

increased cell proliferation, a few common carcinogenic MOAs, are all associated with 

changes in gene expression (Delker et al. 2006; Seidel et al. 2003; Seidel et al. 2006; 

Uehara et al. 2008).  In addition, tissue injury, a process integral to many nongenotoxic 

carcinogens, is accompanied by change in gene expression and increases in the 

number of genes altered reflects the dose-response relationship for tissue injury caused 

by chemicals (Foster et al. 2007).  Therefore, while a possibility, it seems unlikely that 

carcinogenicity would occur without gene expression. 

Another assumption is that changes in clusters of genes identified by 

toxicogenomic analysis reflect the important key events.  By reducing the complexity to 
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significantly perturbed pathways and biological processes, one could miss the impact of 

a single gene or an unknown pathway with a different dose-response behavior several 

ways: (1) the microarray itself may not contain a probe for an influential gene, (2) 

ontologies are based on our current understanding of biology and may not be fully 

described for all relevant pathways, and (3) limitations in the number of dosed groups 

may reduce statistical power and underestimate the number of significant gene 

responses.  It seems unlikely that missing a single gene or pathway would result in a 

significant error in risk assessment.  First, as shown by the fenofibrate analysis, the 

calculated BMD/BMDL values for individual genes had good agreement, with only a few 

outliers.  Second, even if a single gene change or an unknown pathway constituted a 

key event, it seems very unlikely that tumors would form without significant alteration in 

other important biological processes, i.e. key events already captured in existing 

ontologies.  This assumption is supported by the fact that the BMD/BMDL values for all 

significant Kegg and GO processes were within a tight range of values.  It is also worth 

noting the USEPA Guidance does not require that all key events be used in the risk 

assessment, only key event(s) linked to a threshold-based MOA and which provide an 

adequate dose-response assessment (USEPA 2005).  Thus, even if some genes or 

pathways were missed using a systems approach, our analysis suggests that this will 

not significantly influence the overall risk assessment.  Moreover, similar uncertainties 

also apply to conventional risk assessments.  As the technology improves (e.g. 

increased sensitivity with microarrays, or expanded ontologies) these limitations also will 

be reduced.  

A third assumption underpinning the method is that the mechanism does not 

need to be completely elucidated to estimate cancer risk.  Understanding the 

mechanism provides increased confidence in the risk assessment because it allows key 

events to be identified.  However, this is often impractical since the mechanism of 
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tumorigenesis may be too complex to fully describe in a reasonable time frame.  For 

example, methapyrilene was identified as a rodent carcinogen in the 1980’s (Lijinsky et 

al. 1980), but to our knowledge the mechanism has not been established.  This isn’t 

surprising since our toxicogenomic analysis shows that the response is complex, with 

hundreds of genes and many pathways perturbed.  Despite this complexity, our analysis 

supports the hypothesis that a POD can be established using BMD/BMDL values for 

individual pathways and these values were within a tight range.  Therefore, while the 

complexity of the tumorigenesis makes it difficult to identify a key event, we suggest that 

this complex biology is reflected by changes in groups of genes that describe key events 

and that BMD/BMDL values based on these key events can be used in a MOA 

framework to assess the risk for a nongenotoxic carcinogen.   

  The final assumption is that the critical time window for a key event in 

carcinogenicity was not missed.  The time course data for gene expression following 

methapyrilene dosing demonstrated that waves of unique biological processes and 

pathways occurred at different time points suggesting that measurement of a key event 

may depend on the time at which a measurement was made, increasing the complexity 

of the analysis (Figure 5).  This creates a risk that without an identified MOA, the 

analysis will be performed at the wrong time point and the BMD/BMDL values will not 

accurately reflect risk.  However, when we derived the BMD and BMDL values for 

methapyrilene at 1, 3, and 7 days, they did not differ significantly (Figure 6).  Therefore, 

while changes in the key event(s) may differ across time points, the estimated threshold-

dose from the toxicogenomic analysis remained the same.  Admittedly, the time course 

used in these proof-of-concept studies was short relative to a carcinogenicity study.  It is 

possible that the threshold may decrease over time if the carcinogen accumulates or if 

increased toxicity occurred when defense mechanisms are overwhelmed from 
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continuous exposure.  An additional uncertainty factor may be advisable when using 

short-term toxicogenomic data for the risk assessment. 

Conclusions 

In conclusion, this work describes how a framework for carcinogenicity risk 

assessment can be developed using toxicogenomic data for nongenotoxic carcinogens, 

such as fenofibrate and methapyrilene.  Data reduction to biological processes and 

pathways likely contain many of the key events associated with nongenotoxic 

carcinogenicity.  BMD/BMDL values for biological processes and pathways are 

appropriate PODs used for cancer risk assessment as they represent thresholds for 

different key events.  Studies with longer time points, and different species, tumor types, 

and nongenotoxic carcinogens could further validate and refine the framework.  While 

conservative, this proposed risk assessment framework can provide a more practical 

and realistic risk estimate than defaulting to low dose linear extrapolation.     
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Tables 

Table 1.  Probe sets Significantly Perturbed Following Rat Oral Exposure to Fenofibrate 
(0, 30, and 1,000 mg/kg/day) for Two Days. 

ID Gene Name Gene Symbol 

J02749_at ACETYL-COENZYME A ACYLTRANSFERASE 1 ACAA1 

J02749_g_at ACETYL-COENZYME A ACYLTRANSFERASE 1 ACAA1 

X05341_at 

ACETYL-COENZYME A ACYLTRANSFERASE 2 
(MITOCHONDRIAL 3-OXOACYL-COENZYME A 
THIOLASE) ACAA2 

J02752_at ACYL-COENZYME A OXIDASE 1, PALMITOYL ACOX1 

rc_AA799489_g_at ACYL-COENZYME A OXIDASE 1, PALMITOYL ACOX1 

rc_AA893242_g_at 
ACYL-COA SYNTHETASE LONG-CHAIN FAMILY 
MEMBER 1 ACSL1 

rc_AI169758_at APOLIPOPROTEIN C-III APOC3 

M17069_at CALMODULIN 1 CALM3 

rc_AA800243_at 

CELL DEATH-INDUCING DNA FRAGMENTATION 
FACTOR, ALPHA SUBUNIT-LIKE EFFECTOR A 
(PREDICTED) CIDEA_PREDICTED 

D43623_at CARNITINE PALMITOYLTRANSFERASE 1B CPT1B 

M26127_s_at 
CYTOCHROME P450, FAMILY 1, SUBFAMILY A, 
POLYPEPTIDE 2 CYP1A2 

X07259cds_s_at 
CYTOCHROME P450, FAMILY 4, SUBFAMILY A, 
POLYPEPTIDE 22 CYP4A1 

rc_AA924267_s_at 
CYTOCHROME P450, FAMILY 4, SUBFAMILY A, 
POLYPEPTIDE 22 CYP4A1 

rc_AI170568_s_at 
DODECENOYL-COENZYME A DELTA 
ISOMERASE DCI 

D00729_g_at 
DODECENOYL-COENZYME A DELTA 
ISOMERASE DCI 

D00569_g_at 
2,4-DIENOYL COA REDUCTASE 1, 
MITOCHONDRIAL DECR1 

D00569_at 
2,4-DIENOYL COA REDUCTASE 1, 
MITOCHONDRIAL DECR1 

U08976_at 
ENOYL COENZYME A HYDRATASE 1, 
PEROXISOMAL ECH1 

K03249_at 

ENOYL-COENZYME A, HYDRATASE/3-
HYDROXYACYL COENZYME A 
DEHYDROGENASE EHHADH 

X60328_at EPOXIDE HYDROLASE 2, CYTOPLASMIC EPHX2 

X05834_at FIBRONECTIN 1 FN1 

L00191cds#1_s_at FIBRONECTIN 1 FN1 

D16479_at 

HYDROXYACYL-COENZYME A 
DEHYDROGENASE/3-KETOACYL-COENZYME A 
THIOLASE/ENOYL-COENZYME A HYDRATASE 
(TRIFUNCTIONAL PROTEIN), BETA SUBUNIT HADHB 

rc_AA998683_g_at HEAT SHOCK 27KDA PROTEIN 1 HSPB1 

rc_AI170613_g_at HEAT SHOCK 10 KDA PROTEIN 1 HSPE1 

rc_AA894332_at INTEGRIN BETA 3 ITGB3 

rc_AI171506_g_at MALIC ENZYME 1 ME1 

rc_AA891916_g_at MEMBRANE INTERACTING PROTEIN OF RGS16 MIR16 

Y09333_at MITOCHONDRIAL ACYL-COA THIOESTERASE 1 MTE1 
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rc_AA892849_at MAX DIMERIZATION PROTEIN 4 (PREDICTED) MXD4_PREDICTED 

X02918_at PROLYL 4-HYDROXYLASE, BETA POLYPEPTIDE P4HB 

X02918_g_at PROLYL 4-HYDROXYLASE, BETA POLYPEPTIDE P4HB 

AJ224120_at PEROXISOMAL BIOGENESIS FACTOR 11A PEX11A 

M60103_at 
PROTEIN TYROSINE PHOSPHATASE, 
RECEPTOR TYPE, F PTPRF 

rc_H31554_at SIMILAR TO HYPOTHETICAL PROTEIN FLJ25416 RGD1559690_PREDICTED 

rc_AI172293_at STEROL-C4-METHYL OXIDASE-LIKE SC4MOL 

rc_AA893080_at SELENOCYSTEINE LYASE SCLY 

rc_AA874999_at SEC61 BETA SUBUNIT (PREDICTED) SEC61B_PREDICTED 

D00753_at SERINE PROTEASE INHIBITOR SERPINA3N 

M24067_at 
SERINE (OR CYSTEINE) PROTEINASE 
INHIBITOR, CLADE E, MEMBER 1 SERPINE1 

J03621_at 
SUCCINATE-COA LIGASE, GDP-FORMING, 
ALPHA SUBUNIT SUCLG1 
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Table 2.  Kegg Pathway Analysis Following Rat Oral Exposure to Fenofibrate for Two 
Days. 

Kegg Term 
Coun
ta 

Percent 
Relative 
to Total 
Termsb 

P-
Valuec 

BMD 
Media
nd 

BMDL 
Mediane 

BMD 
lower 
95th 
percentil
ef 

BMDL 
lower 
95th 
percentil
eg 

Fatty acid 
metabolism 10 28.6%

4.09E-
11 5.87 4.03 4.01 2.80

PPAR 
signaling 
pathway 9 25.7%

7.65E-
08 5.87 4.03 4.67 3.24

Valine, 
leucine and 
isoleucine 
degradation 4 11.4%

2.54E-
03 5.04 3.49 4.13 2.88

Bile acid 
biosynthesi
s 3 8.6%

2.02E-
02 4.71 3.27 4.13 2.88

Arachidonic 
acid 
metabolism 3 8.6%

7.51E-
02 5.87 4.03 5.14 3.55

 
a.  Number of significantly perturbed genes (one way ANOVA  p ≤ 0.05 as a significant 
change and the Benjamini and Hochberg method for multiple testing correction) with a 
Kegg Term.   
 
b.  Percent of significantly perturbed genes (35) with Kegg Term.  Note that one gene 
can be represented by multiple probe sets. 
 
c.  EASE score or modified Fisher’s Exact Test. 
 
d.  Median benchmark dose (10% response over background - BMD) for all genes 
containing the Kegg term. 
 
e.  Median benchmark dose at the lower 95th percent confidence interval (BMDL) for all 
genes containing the Kegg term. 
 
f.  Lower 95th percentile of all BMD values containing a Kegg term. 
 
g.  Lower 95th percentile of all BMDL values containing a Kegg term. 
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Table 3.  GO Analysis Following Oral Exposure to Fenofibrate for Two Days. 

GO Term 
Count
a 

Percent 
Relativ
e to 
Total 
Termsb 

P-
Valuec 

BMD 
Median
d 

BMDL 
Median
e 

BMD 
Lower 
95th 
percentile
f 

BMDL 
Lower 
95th 
percentile
g 

Metabolic 
process 30 85.7%

1.66E-
05 7.18 4.86 3.70 2.59

Respons
e to 
stimulus 14 40.0%

5.42E-
02 6.51 4.43 3.42 2.40

 
The GO terms analyzed using DAVID were biological processes of the highest 
hierarchical category (GOTERM_BP_1) to facilitate data reduction and identify key 
events. 
 
a.  Number of significantly perturbed genes (one way ANOVA  p ≤ 0.05 as a significant 
change and the Benjamini and Hochberg method for multiple testing correction) with a 
GO Term. 
 
b.  Percent of significantly perturbed genes (35) with the GO Term.  Note that one gene 
can be represented by multiple probe sets. 
 
c.  EASE score or modified Fisher’s Exact Test. 
 
d.  Median benchmark dose (10% response over background - BMD) for all genes 
containing the GO term. 
 
e.  Median benchmark dose at the lower 95th percent confidence interval (BMDL) for all 
genes containing the GO term. 
 
f.  Lower 95th percentile of all BMD values containing a GO term. 
 
g.  Lower 95th percentile of all BMDL values containing a GO term. 
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Table 4.  Kegg Pathway Analysis Following Oral Exposure to Methapyrilene for 7 days. 

GO Term 
Cou
nta 

Perce
nt 
Relati
ve to 
Total 
Terms
b 

P-
Valuec 

BMD 
Media
nd 

BMDL 
Media
ne 

BMD 
lower 
95th 
Percenti
lef 

BMDL 
lower 
95th 
Percenti
leg 

Ribosome 57 5.4%
2.53E-

24 64.05 48.71 40.87 32.90

PPAR signaling 
pathway 30 2.8%

2.26E-
04 73.93 54.80 18.58 9.51

Metabolism of 
xenobiotics by 
cytochrome P450 27 2.5%

1.40E-
05 74.64 55.22 30.35 24.97

Arachidonic acid 
metabolism 24 2.3%

1.47E-
04 77.58 56.94 18.95 9.57

Complement and 
coagulation 
cascades 23 2.2%

9.86E-
04 72.17 53.74 40.64 32.74

Tryptophan 
metabolism 22 2.1%

1.44E-
06 89.36 64.03 27.89 19.18

Androgen and 
estrogen 
metabolism 21 2.0%

3.78E-
04 29.48 11.31 10.82 6.93

Fatty acid 
metabolism 21 2.0%

5.81E-
04 91.38 64.70 18.95 9.57

Antigen 
processing and 
presentation 21 2.0%

7.14E-
02 82.85 59.99 37.57 29.45

Glycolysis / 
Gluconeogenesis 17 1.6%

2.74E-
02 83.83 60.54 38.35 29.36

Glycine, serine 
and threonine 
metabolism 15 1.4%

1.59E-
03 54.37 42.38 17.98 9.01

Pyruvate 
metabolism 14 1.3%

2.18E-
03 85.51 61.68 47.30 37.51

Valine, leucine 
and isoleucine 
degradation 13 1.2%

3.07E-
02 91.95 65.00 49.56 39.10

Linoleic acid 
metabolism 13 1.2%

2.99E-
03 68.98 51.79 33.89 27.70

Biosynthesis of 
steroids 12 1.1%

1.29E-
03 91.02 64.74 26.81 11.06
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Porphyrin and 
chlorophyll 
metabolism 12 1.1%

3.09E-
02 77.67 57.01 41.55 32.21

Pyrimidine 
metabolism 12 1.1%

7.08E-
02 81.22 58.21 34.22 25.47

Alanine and 
aspartate 
metabolism 11 1.0%

3.08E-
02 63.38 48.25 12.18 7.51

Carbon fixation 10 0.9%
7.78E-

03 68.93 51.64 37.07 22.94

Propanoate 
metabolism 10 0.9%

2.99E-
02 88.57 63.17 46.92 37.22

gamma-
Hexachlorocycloh
exane degradation 9 0.8%

5.88E-
03 67.52 50.89 34.89 24.30

ABC transporters - 
General 9 0.8%

2.82E-
02 62.56 47.60 31.54 20.48

Sulfur metabolism 8 0.8%
1.40E-

03 28.81 11.15 20.45 9.73
Nitrogen 
metabolism 8 0.8%

5.87E-
02 86.62 64.38 30.77 22.44

beta-Alanine 
metabolism 8 0.8%

3.97E-
02 74.55 50.50 44.80 35.73

Lysine 
degradation 8 0.8%

5.87E-
02 92.36 67.24 52.16 40.71

Caffeine 
metabolism 8 0.8%

3.64E-
03 91.00 64.49 67.47 50.86

Caprolactam 
degradation 6 0.6%

5.05E-
02 92.36 67.24 71.79 53.48

Terpenoid 
biosynthesis 4 0.4%

5.20E-
02 87.57 62.63 45.34 36.12

 
a.  Number of significantly perturbed genes (one way ANOVA  p ≤ 0.05 as a significant 
change and the Benjamini and Hochberg method for multiple testing correction) with a 
Kegg Term. 
   
b.  Percent of significantly perturbed genes (1066) with the Kegg Term.  Note that one 
gene can be represented by multiple probe sets. 
 
c.  EASE score or modified Fisher’s Exact Test. 
 
d.  Median benchmark dose (10% response over background - BMD) for all genes 
containing the Kegg term. 
 
e.  Median benchmark dose at the lower 95th percent confidence interval (BMDL) for all 
genes containing the Kegg term. 
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f.  Lower 95th percentile of all BMD values containing a Kegg term. 
 
g.  Lower 95th percentile of all BMDL values containing a Kegg term 
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Table 5.  GO Analysis Following Oral Exposure to Methapyrilene for 7 days. 

GO Term 
Count
a 

Percent 
Relative 
to Total 
Terms 
Impacte
db 

P-
Value
c 

BMD 
Median
d 

BMDL 
Media
ne 

BMD 
Lower 
95th 
Percentil
ef 

BMD 
Lower 
95th 
Percentil
eg 

Metabolic 
process 638 59.9%

2.09E
-33 77.95 56.78 19.53 9.69

Biological 
regulation 312 29.3%

1.85E
-04 76.33 56.03 18.72 9.51

Response to 
stimulus 265 24.9%

1.14E
-03 75.61 54.84 18.77 9.55

Localization 246 23.1%
3.84E

-07 77.61 56.97 20.93 10.06

Development
al process 241 22.6%

4.51E
-06 75.93 55.99 15.64 8.81

Establishmen
t of 
localization 217 20.4%

1.70E
-06 77.61 56.98 20.93 10.06

Immune 
system 
process 72 6.8%

8.31E
-04 75.75 55.88 20.11 9.92

Reproduction 46 4.3%
1.65E

-02 71.28 53.21 10.82 6.93

Growth 36 3.4%
5.49E

-04 62.29 46.83 20.21 9.78

Reproductive 
process 29 2.7%

1.13E
-02 66.15 49.52 10.37 6.74

Multi-
organism 
process 27 2.5%

4.37E
-03 62.18 45.80 11.93 7.45

 
The GO terms analyzed using DAVID were biological processes of the highest 
hierarchical category (GOTERM_BP_1) to facilitate data reduction and identify key 
events. 
 
a.  Number of significantly perturbed genes (one way ANOVA  p ≤ 0.05 as a significant 
change and the Benjamini and Hochberg method for multiple testing correction) with a 
GO Term.   
 
b.  Percent of significantly perturbed genes (1066) with the GO Term.  Note that one 
gene can be represented by multiple probe sets. 
 
c.  EASE score or modified Fisher’s Exact Test. 
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d.  Median benchmark dose (10% response over background - BMD) for all genes 
containing the GO term. 
 
e.  Median benchmark dose at the lower 95th percent confidence interval (BMDL) for all 
genes containing the GO term. 
 
f.  Lower 95th percentile of all BMD values containing a GO term. 
 
g.  Lower 95th percentile of all BMDL values containing a GO term. 
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Figures 

 

Figure 1.  Peroxisomal -oxidation (PBox) PBox activity in female rat livers following four 
days of oral fenofibrate.  Each dose (n=2) is represented by a mean response relative to 
control at doses of 0-1000 mg/kg/day.  Although response is represented as percent 
response over background, the units used to measure PBox activity was nmol NAD 
reduced / (min x mg protein). 
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Figure 3.  Benchmark dose analysis of each significantly perturbed gene following a two 
days exposure to fenofibrate at doses of 0, 30, and 1,000 mg/kg.  BMD values 
represents a 10% gene response over background.  BMDL represents a 10% response 
and the lower 95th percent confidence interval.  Individual genes are represented by their 
symbolic notation.   
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Figure 4.  Time course for number of probe sets significantly perturbed following 
administration of methapyrilene.  The oral gavage doses in the study for methapyrilene 
were the vehicle control, 10 mg/kg/day and 100 mg/kg/day over a period of 1, 3, and 7 
days.  Significantly perturbed genes were determined by using one way ANOVA  
p ≤ 0.05 as a significant change and the Benjamini and Hochberg method for multiple 
testing correction.



127 
 

 

 

 

A
. 



128 
 

 

 

 

 

 

    

F
ig

ur
e 

5.
  M

et
ha

py
ril

en
e 

(5
A

) 
K

eg
g 

an
d 

(5
B

) 
G

e
ne

 O
nt

ol
og

y 
(G

O
) 

tim
e 

co
ur

se
 a

na
ly

se
s 

fo
r 

si
gn

ifi
ca

nt
ly

 p
er

tu
rb

ed
 g

en
es

 fo
r 

al
l d

os
es

.  
S

ig
ni

fic
an

t K
eg

g 
pa

th
w

ay
s 

or
 G

O
 te

rm
s 

w
er

e 
de

te
rm

in
ed

 b
y 

D
A

V
ID

, 
w

hi
ch

 g
en

er
at

es
 a

n 
E

A
S

E
 s

co
re

 o
r 

m
od

ifi
ed

 F
is

he
r’s

 E
xa

ct
 T

es
t f

or
 

ea
ch

 te
rm

, a
nd

 a
 c

ut
of

f o
f p

 ≤
 0

.1
 w

as
 a

pp
lie

d 
to

 e
ac

h 
K

eg
g 

an
d 

G
O

 te
rm

.  
R

ep
or

te
d 

ar
e 

th
e 

pe
rc

en
t 

of
 g

en
es

 t
ha

t 
co

nt
ai

n 
th

e 
on

to
lo

gi
ca

l t
er

m
 r

el
at

iv
e 

to
 t

he
 t

ot
al

 n
um

be
r 

of
 s

ig
ni

fic
an

tly
 

pe
rt

ur
be

d 
ge

ne
s.

 

B
. 



129 
 

A. 
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B. 

 

Figure 6.  Mean and standard deviation BMD and BMDL values for (6A) Kegg Pathways 
and (6B) GO terms significantly impacted over 1, 3, and 7 days.  Reported are the mean 
of the median values and the lower 95th percentile values for all significant Kegg 
pathway or GO terms.   



131 
 

A. 
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B. 

 

Figure 7.  Comparison of toxicogenomics to other risk assessment endpoints for (7A) 
fenofibrate and (7B) methapyrilene for heptocarcinogenicity.  PBox activity was 
considered the known key event identified for fenofibrate related to the MOA (PPARα 
activation) for carcinogenicity.  The BMD and BMDL calculated for PBox activity was 
based on the best fitting model (Hill model).  The tumorigenic dose for fenofibrate of was 
established from the package insert (http://dailymed.nlm.nih.gov/dailymed/about.cfm).  
While the MOA is unknown for methapyrilene, precursor effect-doses (liver injury and 
BrDU / PCNA labeling) (Waring et al. 2004; Cunningham et al. 1995) and tumorigenic 
dose (http://potency.berkeley.edu/) were identified from the literature.   
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DISCUSSION 

Risk assessment is used to make decisions surrounding appropriate exposure 

levels of carcinogens in the environment.  Oftentimes there is limited data to make a 

complete assessment.  Therefore, the goal of these methodologies and three Specific 

Aims was to provide an assurance surrounding cancer risk, when limited data was 

available.  Three critical needs were identified in cancer risk assessment: (1) mixtures of 

genotoxic compounds, (2) genotoxic metabolites, and (3) nongenotoxic carcinogens.   

Advancement of Carcinogenicity Risk Assessment Framework 

 The results of the three aims are integral to the overall framework for 

carcinogenicity risk assessment.  Figure 1 shows the decision tree for assessing cancer 

risk based on different types of information including techniques from the Specific Aims.  

The type of risk assessment framework that is required is dependent on the information 

available.  Most compounds will not have carcinogenicity information due to the 

resources involved and high animal usage from cancer bioassays.  Therefore 

genotoxicity is relied upon heavily to address carcinogenic potential.  As addressed in 

Aim 1, a method was developed which can provide a more realistic assessment of 

carcinogenic risk than the conservative TTC default for genotoxic compounds without 

carcinogenicity information.  A decision tree was designed so that non-potent 

compounds had a numerical cancer potency prediction and potent compounds used the 

TTC default.  A similar approach may be applied for structurally similar compounds as 

dissimilar compounds, which uses separate risk assessments for each compound.   

Animal carcinogenicity data does exist for many compounds, and should be used 

in concert with the genotoxicity test systems.  Even though the compound may not be 

carcinogenic, the metabolite if genotoxic may still contain some carcinogenicity 

concerns.  A new risk assessment model was developed in Aim 2 for genotoxic 

metabolites to assess their carcinogenic risk.  This used exposure data in excretion 
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material in both animals and humans to determine the overall carcinogenic risk of a 

compound.   

If a compound is determined to be carcinogenic in animals, one must determine 

the potential impact to humans.  Genotoxic carcinogens are assumed to have no 

threshold and a linear low-dose extrapolation is typically applied.  A threshold may exist 

for nongenotoxic carcinogens; therefore linear low-dose extrapolation may not be the 

most appropriate risk assessment methodology.  If a threshold-based mode of action 

(MOA) is identified, then a less conservative risk assessment than linear low-dose 

extrapolation is applied.  Aim 3 established methodology using toxicogenomics to 

analyze key events contained within the MOA.  This analysis in combination with 

benchmark dose allows the identification of a threshold for a nongenotoxic carcinogen.   

Each section of the decision matrix is critical to understanding the risk of a 

compound; thus the advancements in each area impacted the overall framework.  The 

following sections are descriptions of how each Specific Aim advanced the overall 

framework for carcinogenicity risk assessment. 

Specific Aim 1 

Specific Aim 1 focused on providing a scientific analysis for mixtures of genotoxic 

compounds.  Many compounds may either be positive in a mutagenicity assay or have a 

structure which is concerning from a carcinogenicity perspective, but no long-term 

carcinogenicity data exists in animals (Ashby and Paton 1993; Ashby and Tennant 1991; 

Zeiger et al. 1996).  This is of particular concern for impurities in pharmaceuticals, where 

only limited toxicology data is available (Müller et al. 2006).  Genotoxic impurities have a 

potential to cause a carcinogenic response in patients at levels where the genotoxicity / 

oncogenicity studies for the pharmaceutical substance could not theoretically detect the 

effect (Jacobson-Kram and Jacobs 2005; McGovern and Jacobson-Kram 2006).  A 

contamination event of a genotoxic impurity, ethyl methanesulfonate, in the HIV drug 
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Viracept® underscored the importance of understanding the risk of genotoxic impurities 

in pharmaceuticals (Gerber and Toelle 2009; Muller and Singer 2009; Pozniak et al. 

2009; Walker et al. 2009).  Vital supplies of this life-saving medication were delayed until 

Roche was able to determine the safety impact of high levels of the genotoxin in their 

medication (CHMP 2008b).  The threshold of toxicological concern (TTC) is an 

established default when genotoxicity but not carcinogenicity information is available for 

a chemical (Kroes et al. 2004; Müller et al. 2006).  The TTC value was based on a 

distribution of known carcinogens, and a value was selected to represent a high 

probability of not exceeding a negligible excess cancer risk.  The TTC has not only been 

used for pharmaceutical genotoxic impurities, but also for other industries such as food 

or personal care products (Blackburn et al. 2005; Felter et al. 2009; Kroes et al. 2004).  

Despite the utility of the TTC, it is a conservative default and improvements to the 

methodology can be made which provide a more accurate risk assessment.  

Methodology improvement for a single genotoxic compound could eventually be used for 

mixtures methodology. 

The first study improved upon cancer risk assessment for a single genotoxic 

compound; we tested the hypothesis that carcinogenic potency can be predicted from a 

database of known carcinogens (cancer potency database - CPDB) (Chapter 2) (Gold et 

al. 1999; Gold et al. 2005; Gold et al. 1991).  Models were successfully developed which 

predicted cancer potency in rats and mice.  A framework was established from these 

models which: (1) predicts if a compound’s carcinogenicity is potent or not potent, (2) 

makes a quantitative prediction of cancer risk if a prediction is considered not potent, 

and (3) defaults to the existing TTC for compounds considered potent or if 

indeterminate/unreliable predictions are made.  These models errored to be 

conservative; thus, increased the number of false positives (compounds predicted to be 

potent that were not potent).  Although conservative, this framework would be a 
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significant improvement to cancer risk assessment for a single genotoxic compound as 

realistic risk assessments can be made in certain instances in lieu of the more 

conservative TTC default.  Once we improved the risk assessment for a single genotoxic 

compound, we focused on mixtures. 

No methodology is yet available for multiple genotoxic compounds.  Yet in reality 

we are exposed to a mixture of genotoxic compounds.  This is was of particular concern 

for genotoxic impurities and reflected in the EMEA / FDA guidance documents (CHMP 

2008a; Jacobson-Kram and Jacobs 2005; USFDA 2008b).  Structurally similar 

compounds were to be treated with independent limits, while structurally similar 

compounds were to be treated like they were the same compound, thus grouping all the 

limits into one combined limit such that the total exposure would not exceed the TTC.  

The rationale was based on judgment and not on science.  Therefore, our next study 

was to test the validity of current existing guidances. 

The goal of our next study in Aim 1 was to develop a methodology to assess the 

risk of mixtures of genotoxic compounds (Chapter 3).  Our hypothesis was that the 

excess cancer risk will be higher for structurally similar compounds than for structurally 

dissimilar compounds.  First, we categorized all compounds from the CPDB by alert 

structure (structure that is correlated with carcinogenic activity), and if a compound did 

not belong in a category we considered it “other”.  If structurally similar compounds 

behaved similarly from a biological perspective, then the carcinogenic risks in each 

category should correlate with each other.  However, our results showed that the 

carcinogenic risks did not correlate which each other, which is not necessarily surprising.  

Structurally similar compounds are assumed to have a similar mechanism of action, 

which may imply risk values that are close to each other.  However, slight changes in 

structure could influence the ability for a compound to be absorbed, metabolized and 

penetrate into the target organ.  In fact, many of the compounds with the same alerting 
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structure still differed substantially with the rest of the moiety, or had an additional 

structural alert.  Therefore, there was no evidence that compounds with the same alert 

structure would have correlated risks. 

Despite evidence to the contrary, a second analysis was performed assuming 

structurally similar compounds would have correlated risks to determine if this would 

significantly impact the overall risk assessment.  Monte Carlo simulations were 

performed for two scenarios: (1) structurally similar compounds with carcinogenic risks 

that were purely random, and (2) structurally dissimilar compounds with risks that were 

within ± 10-fold from the first compound.  Despite the original hypothesis, total cancer 

risk decreased slightly for structurally similar compounds (correlated risks) relative to 

structurally unrelated compounds (random risks).  Therefore, based on these two 

analyses, even if it were assumed that genotoxic compounds related in structure had 

similar carcinogenic potencies, it should not result in a lower TTC than for compounds 

structurally unrelated to each other.   

In conclusion, Aim 1 was successfully completed by improving upon 

methodology for a single genotoxic compound and addressing cancer risk assessment 

for mixtures of genotoxic compounds.  This work tested and expanded current 

methodology to improve upon current regulatory guidances.  The major finding was that 

multiple structurally similar genotoxins would not likely provide a greater carcinogenic 

risk than structurally dissimilar genotoxins. 

Specific Aim 2 

 Specific Aim 2 focused on the risk assessment of genotoxic metabolites.  

Metabolism is an essential part of understanding the safety of a consumed compound.  

Compounds when ingested undergo extensive biotransformation, yielding a variety of 

systemic metabolites.  Safety testing for a compound requires an understanding of the 

potential toxicity of these metabolites (Baillie et al. 2002).  Despite the need for 
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evaluating genetic safety of metabolites, no practical recommendations are available.  A 

working group which convened at the 4th International Workshop of Genotoxicity Tests 

(IWGT) acknowledged the need for a practical strategy to respond to documented 

human metabolite exposures.  They suggested that the TTC, similar to the value derived 

for pharmaceutical impurities described in Aim 1, may be used to support a risk 

assessment approach for genotoxic human metabolites (Ku et al. 2007).  Therefore, the 

hypothesis was that the impurity-based TTC could be applied as a practical risk 

assessment tool for metabolites. 

Prior to testing the hypothesis, the elements of risk assessment (e.g. hazard 

identification, exposure assessment, and risk characterization) were incorporated to 

determine a risk assessment framework for genotoxic metabolites (Chapter 4).  For 

hazard identification, we found that it is less relevant to conduct a genotoxicity 

assessment for metabolites identified in the plasma.  Genotoxic metabolites can have 

short half-lives in the bloodstream and difficult to measure.  The best way to identify 

potential genotoxic hazards was to identify metabolites in the excretion material and then 

derive upstream metabolites.  These “likely” metabolites can be analyzed based on 

structure or machine learning methods (e.g. in silico) to determine if in there is a 

potential for these compounds to have genotoxic activity (Ashby and Paton 1993; 

Hayashi et al. 2005; Snyder et al. 2004; White et al. 2003).  Follow-up Ames testing if 

necessary can confirm predictions.  Once concluded to be genotoxic, then it is possible 

to determine potential exposure to the metabolite. 

Exposure to genotoxic metabolites must be quantified so it can be used in to 

assess risk.  As with hazard identification, excretion material was determined to be a 

better estimate for exposure to genotoxic metabolites.  Genotoxic substances can either 

concentrate in the tissues or bind to protein; thus, if measuring in the plasma one could 

underestimate the actual exposure of the metabolite in the body (Smith and Obach 
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2006).  Excretion material can be used to calculate metabolite total body burden - total 

systemic exposure of the metabolite throughout the body (Smith and Obach 2005).  The 

percent excretion, relative to dose, from downstream metabolites can then be used to 

determine the likely percent excretion of upstream metabolites.  Once exposure was 

quantified in both animals and humans, it was possible to test if the TTC was appropriate 

for risk assessment. 

Despite the hypothesis, it was found that the TTC used for pharmaceutical 

impurities was not adequate to derive risk for genotoxic metabolites.  While 

advancements have been made to measure metabolites at low levels, it is unlikely that a 

metabolite can be measured at levels as low as the TTC developed for impurities.  For 

example, assuming a 100 mg dose, the acceptable level of a genotoxic metabolite would 

be 0.0015%, which would be impossible to measure; whereas, it is possible to measure 

pharmaceutical impurities at extremely low (ppm) levels (Humfrey 2007; Pierson et al. 

2009).  Also, while it is possible to reduce impurity levels, it is not possible to reduce 

metabolite levels.  Once a genotoxic metabolite is identified, it is then a part of the risk of 

a pharmaceutical that cannot be mitigated.  This means there is a different level of risk 

tolerance where metabolites are part of the risk/benefit equation for a pharmaceutical; 

whereas, impurities are assumed to have no benefit and a lower level of risk is tolerated 

(Kasper 2004; McGovern and Jacobson-Kram 2006).  For these reasons, we developed 

a model to derive a metabolite-based TTC. 

Using the same CPDB database as the impurity-based TTC, we developed a 

new model for assessing the risk of genotoxic metabolites and used as a foundation for 

a metabolite TTC.  The model incorporated exposure in humans and animals, and took 

into account the probability that a genotoxic compound is a carcinogen.  The model for 

human exposure was developed to determine the probability that a carcinogen would be 

of negligible excess cancer risk defined as 1 incidence in 100,000 (10-5).  The model for 
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animal exposure was developed to determine the probability that a carcinogen would 

result in a tumorigenic response in animals, or in essence be “detected” in a bioassay.  

Finally, the probability that a genotoxic substance is a human carcinogen was fixed 

based on prior experience as 50% (Barlow et al. 2001).  Each of these three probabilities 

were incorporated together to determine the total probability that a genotoxic metabolite 

would result in a 10-5 excess cancer risk.  The next step was to use this model to 

generate a metabolite-based TTC. 

Different animal and human dose combinations were tested in the model to 

determine some generalities and help generate a metabolite-based TTC.  There were 

some generalities that emerged from this exercise.  These generalities indicated that 

there was a high probability of not exceeding a 10-5 excess cancer risk under certain 

scenarios:  (1) if an animal metabolite dose was ≥ 10 mg/kg/day, (2) if the margin was 

≥1000x when dividing animal exposure by human exposure, or (3) if human exposure ≤ 

1.5 µg/day, which confirmed the observations used to derive the impurity-based TTC 

(Kroes et al. 2004).  These generalities in combination with the risk framework were 

adequate measures of a metabolite-based TTC. 

In conclusion, while the impurity-based TTC was not found to be an effective 

methodology for metabolites, an alternative metabolite-based TTC was derived.  Certain 

generalities emerged from model development that were used to determine the 

probability of not exceeding a 10-5 excess cancer risk.  These generalities and the model 

can be used to determine the safety of an identified genotoxic metabolite and its utility 

was established using case studies as described in Chapter 4. 

Specific Aim 3 

In Aim 3, the focus was to establish a risk assessment approach for 

nongenotoxic carcinogens.  The difference between genotoxic and nongenotoxic 

carcinogens is that genotoxic carcinogens cause direct damage to DNA resulting in 
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carcinogenicity (Barlow et al. 2006).  The mechanism of nongenotoxic carcinogenicity 

can be through a variety of mechanisms and DNA damage can occur but through an 

indirect mechanism (Butterworth 2006; USEPA 2005a).  The assumption in the prior two 

Aims was that genotoxic compounds or metabolites had no threshold.  Nongenotoxic 

carcinogens may act via a threshold, which is the dose-cutoff where exposure below the 

dose should not have a carcinogenic effect (Alden 2000; USEPA 2005a).  A threshold 

can be established by understanding the MOA or a description of key event(s) 

necessary to result in carcinogenicity (USEPA 2005a).  A MOA is different from 

mechanism, which requires a detailed causal understanding of tumorigenesis many 

times at the molecular level.  However, it can be difficult to establish a MOA since it can 

be experimentally time-consuming and there can be multiple MOAs with multiple key 

events.  Therefore, the goal of Aim 3 was to improve upon existing carcinogenicity 

methods by identifying a threshold for key events of nongenotoxic carcinogens, 

otherwise known as the point of departure (POD).  Similar to the TTC, this can be used 

to determine a safe level for a nongenotoxic carcinogen. 

The hypothesis tested in Chapter 5 was that the POD derived from genomic 

analysis of key events could be determined and it was below tumorigenic and precursor 

events.  This hypothesis was tested with two known nongenotoxic carcinogens, 

fenofibrate and methapyrilene, using toxicogenomics.  Administration of each compound 

resulted in hepatocarcinogenicity in long-term oncogenicity studies, which was not 

associated with direct damage to the DNA (Lijinsky 1984; Lijinsky and Kovatch 1986; 

Lijinsky et al. 1992; Lijinsky et al. 1980; Mirsalis 1987; PI 2006).  The MOA has been 

established for fenofibrate while the MOA has not been established for methapyrilene.  

Fenofibrate activates the PPARα receptor which results in peroxisomal proliferation and 

at a certain threshold this overwhelms the organism’s liver homeostasis resulting in 

heptocarcinogenicity when administered over a chronic duration (Gonzalez et al. 1998; 
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Klaunig et al. 2003; Yu et al. 2003).  Methapyrilene is a nongenotoxic carcinogen where 

a MOA has not yet been established, but it is related to a sustained proliferative 

response as an adaptation to chronic periportal injury and cell death (Cunningham et al. 

1995; Mercer et al. 2009).  While these nongenotoxic carcinogens may be species 

specific (Klaunig et al. 2003; Mirsalis 1987), they serve as adequate examples to test the 

hypothesis. 

Ontological analysis of microarray data was determined to be effective for 

identification of key events for nongenotoxic carcinogenicity.  The basic assumption is 

that gene expression is impacted by nongenotoxic carcinogenicity, which is reasonable 

(Chapter 5).  Well-developed ontologies such as Kegg Pathways (Kanehisa and Goto 

2000; Kanehisa et al. 2006) and Gene Ontology (GO) (Ashburner et al. 2000) were 

analyzed (Dennis et al. 2003) to identify the biological processes and pathways that are 

impacted by perturbed genes.  It is also reasonable to assume that these biological 

processes and pathways contain key events for carcinogenicity (Chapter 5).  While it 

may be impossible to know if all key events were analyzed, identifying key event(s) 

related to dose-response activity is consistent with current regulatory guidances (USEPA 

2005a).  Adaptation of standard dose-response methodology, e.g. benchmark dose, to 

genomics allowed thresholds to be set based on these ontologies; thus, this led to 

thresholds for key events (Andersen et al. 2008; Thomas et al. 2007; Yang et al. 2007).  

Therefore, toxicogenomics filled a critical gap for cancer risk assessment of 

nongenotoxic carcinogens by providing a dose-response for potential key events; this 

analysis served as a POD for cancer risk assessment in lieu of conservative low dose 

linear extrapolation. 

A comparison of the toxicogenomic POD with tumorigenic or precursor doses 

confirmed the hypothesis; the toxicogenomic PODs were below tumorigenic and 

precursor effects.  The toxicogenomic POD of 2 mg/kg/day was slightly below the 
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threshold for PBox activity (6-7 mg/kg/day) and significantly below the tumorigenic dose 

(200 mg/kg/day) (PI 2006).  Since no single MOA was known for methapyrilene 

carcinogenicity, several biological markers were captured from the literature for 

validation.  The toxicogenomic POD (7 mg/kg/day) was slightly below the subchronic 

mitogenic dose (10 mg/kg/day) (Cunningham 1996; Cunningham et al. 1995) and the 

tumorigenic dose (TD50 = 9 mg/kg/day) 

(http://potency.berkeley.edu/chempages/METHAPYRILENE.HCl.html) and well below 

the acute (7 days) dose which resulted in liver periportal necrosis (100 mg/kg/day) 

(Waring et al. 2004).  Therefore, the toxicogenomic POD was validated in these two 

examples to be below other effect-doses for carcinogenicity. 

In conclusion, a threshold for nongenotoxic carcinogens could be determined via 

an analysis of key events and dose-response using toxicogenomics.  The approach was 

validated with two nongenotoxic carcinogens, where their toxigenomic PODs were below 

tumorigenic or precursor effect-doses.  Further study would validate the method: longer 

dosing regimens; and different species, tumor sites, and nongenotoxic compounds.  The 

overall impact of this study is that it provides a framework to determine the safe dose of 

a nongenotoxic carcinogen without the time and resources necessary using traditional 

methodology. 

Conclusions 

 This dissertation successfully tested and demonstrated a risk assessment 

framework for mixtures of genotoxic compounds, genotoxic metabolites, and 

nongenotoxic carcinogens, when data was limited.  While the overall goal for protection 

of public health was the same, each type of risk assessment required a unique 

approach.  An informatics approach was critical since it was necessary to retrieve, 

annotate and analyze information from existing databases and ontologies.  Although 

statistical analysis was important, it was equally important to understand the structure of 
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the data, the relationship among organizing themes within the data, e.g. gene 

ontologies, and how these related to biologically relevant conclusions.  Estalishing the 

application of informatics technology at this interface between biological and statistical 

analyses is essential since the demand for the safety assessment of chemicals 

continues to grow with pressures of reduced animal testing.  As shown by the risk 

assessment framework addressed by the Specific Aims (Figure 1), informatics will 

become an increasingly important part of risk assessment.  Future research will be 

needed to improve upon existing methodology and examples of successful 

implementation to show its practical use. 
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Figures 

 

Figure 1.  Advancement of the overall framework for carcinogenicity risk assessment 
from the three Specific Aims. 
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