- Browse by Title
Mark R. Kelley
Permanent URI for this collection
Dr. Kelley is the 2017 recipient of the Bantz Petronio Translating Research Into Practice Award
Since joining the Department of Pediatrics at the IU School of Medicine in 1993, Dr, Kelley’s work has focused on translational research in DNA damage and repair, specifically, to determine how those activities can be exploited therapeutically to treat cancers and protect normal cells from DNA damage.
He has focused specifically on the enzyme called APE1 as a therapeutic target in cancers and other diseases. Dr. Kelley discovered and has been developing a specific inhibitor of APE1 which he is now translating to clinical trials. This work has also led to the creation of a biotechnology company called Apexian Pharmaceuticals, of which Dr. Kelley is the Chief Scientific Founder and Officer.
The first drug developed has recently been approved by the FDA for Phase 1 clinical trials in cancer patients scheduled to begin in 2017. The drug has potential uses in a number of cancers including ovarian, colon, bladder, pancreatic, leukemia, and other adult and pediatric cancers.
He is also exploring the use of the target APE1 and the drug to prevent a major side-effect of cancer treatments called chemotherapy-induced peripheral neuropathy (CIPN).
Dr. Kelley is committed to fast-tracking collaboration and translational research efforts in order to find more effective cancer treatments. He also mentors and encourages students, post-doctorates, fellows and junior faculty in translating their research into practice to expand the number of discoveries that help solve problems and make life better.
Professor Kelley's application of a business model to support research planning and implementation is another example of how IUPUI's faculty members are TRANSLATING their RESEARCH INTO PRACTICE.
Browse
Browsing Mark R. Kelley by Title
Results Per Page
Sort Options
Item Activation of APE/Ref-1 redox activity is mediated by reactive oxygen species and PKC phosphorylation(2001-05) Hsieh, Marlene M.; Hegde, Vijay; Kelley, Mark R.; Deutsch, Walter A.Reactive oxygen species (ROS) arise through normal cellular aerobic respiration, and, in combination with external sources such as ionizing radiation, cigarette tar and smoke, and particulate matter generated by combustion, can have a profound negative effect on cellular macromolecules such as DNA that may lead to a number of human pathological disorders including accelerated aging and cancer. A major end product of ROS damage to DNA is the formation of apurinic/apyrimidinic (AP) sites, which without removal are known to halt mRNA and DNA synthesis, or act as non-coding lesions resulting in the increased generation of DNA mutations. In human cells, the major enzyme in correcting the deleterious effects of AP sites in DNA is through the participation of AP endonuclease (APE), which initiates the removal of baseless sites in DNA through the catalytic scission of the phosphodiester bond 5′ and adjacent to an AP site. Interestingly, APE also possesses an activity (Ref-1) that controls the redox status of a number of transcription factors including Fos and Jun. The means by which APE/Ref-1 is directed to carry out such disparate roles are unknown. The presence of a number of phosphorylation sites scattered throughout both functional domains of APE/Ref-1 however offered one possible mechanism that we reasoned could play a role in dictating how this protein responds to different stimuli. Here we show that the in vitro redox activity of APE/Ref-1 is stimulated by PKC phosphorylation. Furthermore, when human cells were exposed to the PKC activator phorbol 12-myristate 13-acetate, an increase in redox activity was observed that corresponded to an increase in the phosphorylation status of APE/Ref-1. Importantly, human cells exposed to the oxidizing agent hypochlorite, followed by methyl methanesulfanate, responded with an increase in redox activity by APE/Ref-1 that also involved an increase in PKC activity and a corresponding increase in the phosphorylation of APE/Ref-1. These results suggest that the ability of APE/Ref-1 to perform its in vivo redox function is correlated to its susceptibility to PKC phosphorylation that notably occurs in response to DNA damaging agents.Item Activation of APE1/Ref-1 is dependent on reactive oxygen species generated after purinergic receptor stimulation by ATP(2005-07) Pines, Alex; Perrone, Lorena; Bivi, Nicoletta; Romanello, Milena; Damante, Giuseppe; Gulisano, Massimo; Kelley, Mark R.; Quadrifoglio, Franco; Tell, GianlucaApurinic apyrimidinic endonuclease redox effector factor-1 (APE1/Ref-1) is involved both in the base excision repair (BER) of DNA lesions and in the eukaryotic transcriptional regulation. APE1/Ref-1 is regulated at both the transcriptional and post-translational levels, through control of subcellular localization and post-translational modification. In response to stress conditions, several cell types release ATP, which exerts stimulatory effects on eukaryotic cells via the purinergic receptors (P2) family. By using western blot and immunofluorescence analysis on a human tumour thyroid cell line (ARO), we demonstrate that purinergic stimulation by extracellular ATP induces quick cytoplasm to nucleus translocation of the protein at early times and its neosynthesis at later times. Continuous purinergic triggering by extracellular ATP released by ARO cells is responsible for the control of APE1/Ref-1 intracellular level. Interference with intracellular pathways activated by P2 triggering demonstrates that Ca2+ mobilization and intracellular reactive oxygen species (ROS) production are responsible for APE1/Ref-1 translocation. The APE1/Ref-1 activities on activator protein-1 (AP-1) DNA binding and DNA repair perfectly match its nuclear enrichment upon ATP stimulation. The biological relevance of our data is reinforced by the observation that APE1/Ref-1 stimulation by ATP protects ARO cells by H2O2-induced cell death. Our data provide new insights into the complex mechanisms regulating APE1/Ref-1 functions.Item Altering DNA Base Excision Repair: Use of Nuclear and Mitochondrial-Targeted N-Methylpurine DNA Glycosylase to Sensitize Astroglia to Chemotherapeutic Agents(2007-11) Harrison, Jason F.; Rinne, Mikael L.; Kelley, Mark R.; Druzhyna, Nadiya M.; Wilson, Glenn L.; Ledoux, Susan P.Primary astrocyte cultures were used to investigate the modulation of DNA repair as a tool for sensitizing astrocytes to genotoxic agents. Base excision repair (BER) is the principal mechanism by which mammalian cells repair alkylation damage to DNA and involves the processing of relatively nontoxic DNA adducts through a series of cytotoxic intermediates during the course of restoring normal DNA integrity. An adenoviral expression system was employed to target high levels of the BER pathway initiator, N-methylpurine glycosylase (MPG), to either the mitochondria or nucleus of primary astrocytes to test the hypothesis that an alteration in BER results in increased alkylation sensitivity. Increasing MPG activity significantly increased BER kinetics in both the mitochondria and nuclei. Although modulating MPG activity in mitochondria appeared to have little effect on alkylation sensitivity, increased nuclear MPG activity resulted in cell death in astrocyte cultures treated with methylnitrosourea (MNU). Caspase-3 cleavage was not detected, thus indicating that these alkylation sensitive astrocytes do not undergo a typical programmed cell death in response to MNU. Astrocytes were found to express relatively high levels of antiapoptotic Bcl-2 and Bcl-XL and very low levels of proapoptotic Bad and Bid suggesting that the mitochondrial pathway of apoptosis may be blocked making astrocytes less vulnerable to proapoptotic stimuli compared with other cell types. Consequently, this unique characteristic of astrocytes may be responsible, in part, for resistance of astrocytomas to chemotherapeutic agents.Item Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain(2007-03) Zou, Gang-Ming; Luo, Meihua; Reed, April; Kelley, Mark R.; Yoder, Mervin C.Ape1 is a molecule with dual functions in DNA repair and redox regulation of transcription factors. In Ape1-deficient mice, embryos do not survive beyond embryonic day 9, indicating that this molecule is required for normal embryo development. Currently, direct evidence of the role of Ape1 in regulating hematopoiesis is lacking. We used the embryonic stem (ES) cell differentiation system and an siRNA approach to knockdown Ape1 gene expression to test the role of Ape1 in hematopoiesis. Hemangioblast development from ES cells was reduced 2- to 3-fold when Ape1 gene expression was knocked down by Ape1-specific siRNA, as was primitive and definitive hematopoiesis. Impaired hematopoiesis was not associated with increased apoptosis in siRNA-treated cells. To begin to explore the mechanism whereby Ape1 regulates hematopoiesis, we found that inhibition of the redox activity of Ape1 with E3330, a specific Ape1 redox inhibitor, but not Ape1 DNA repair activity, which was blocked using the small molecule methoxyamine, affected cytokine-mediated hemangioblast development in vitro. In summary, these data indicate Ape1 is required in normal embryonic hematopoiesis and that the redox function, but not the repair endonuclease activity, of Ape1 is critical in normal embryonic hematopoietic development.Item APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER(Elsevier, 2015-09) Kim, Hyun-Suk; Guo, Chunlu; Jiang, Yanlin; Kelley, Mark R.; Vasko, Michael R.; Lee, Suk-Hee; Thompson, Eric L.; Department of Biochemistry & Molecular Biology, IU School of MedicinePeripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24h. In cultures where APE1 expression was reduced by ∼ 80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons.Item APE1/Ref-1 Interacts with NPM1 within Nucleoli and Plays a Role in the rRNA Quality Control Process(2009-04) Vascotto, Carlo; Fantini, Damiano; Romanello, Milena; Cesaratto, Laura; Deganuto, Marta; Leonardi, Antonio; Radicella, J Pablo; Kelley, Mark R.; D'Ambrosio, Chiara; Scaloni, Andrea; Quadrifoglio, Franco; Tell, GianlucaAPE1/Ref-1 (hereafter, APE1), a DNA repair enzyme and a transcriptional coactivator, is a vital protein in mammals. Its role in controlling cell growth and the molecular mechanisms that fine-tune its different cellular functions are still not known. By an unbiased proteomic approach, we have identified and characterized several novel APE1 partners which, unexpectedly, include a number of proteins involved in ribosome biogenesis and RNA processing. In particular, a novel interaction between nucleophosmin (NPM1) and APE1 was characterized. We observed that the 33 N-terminal residues of APE1 are required for stable interaction with the NPM1 oligomerization domain. As a consequence of the interaction with NPM1 and RNA, APE1 is localized within the nucleolus and this localization depends on cell cycle and active rRNA transcription. NPM1 stimulates APE1 endonuclease activity on abasic double-stranded DNA (dsDNA) but decreases APE1 endonuclease activity on abasic single-stranded RNA (ssRNA) by masking the N-terminal region of APE1 required for stable RNA binding. In APE1-knocked-down cells, pre-rRNA synthesis and rRNA processing were not affected but inability to remove 8-hydroxyguanine-containing rRNA upon oxidative stress, impaired translation, lower intracellular protein content, and decreased cell growth rate were found. Our data demonstrate that APE1 affects cell growth by directly acting on RNA quality control mechanisms, thus affecting gene expression through posttranscriptional mechanisms.Item APE1/Ref-1 knockdown in pancreatic ductal adenocarcinoma – characterizing gene expression changes and identifying novel pathways using single-cell RNA sequencing(Wiley, 2017-12) Shah, Fenil; Goossens, Emery; Atallah, Nadia M.; Grimard, Michelle; Kelley, Mark R.; Fishel, Melissa L.; Department of Pediatrics, School of MedicineApurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1 or APE1) is a multifunctional protein that regulates numerous transcription factors associated with cancer-related pathways. Because APE1 is essential for cell viability, generation of APE1-knockout cell lines and determining a comprehensive list of genes regulated by APE1 has not been possible. To circumvent this challenge, we utilized single-cell RNA sequencing to identify differentially expressed genes (DEGs) in relation to APE1 protein levels within the cell. Using a straightforward yet novel statistical design, we identified 2837 genes whose expression is significantly changed following APE1 knockdown. Using this gene expression profile, we identified multiple new pathways not previously linked to APE1, including the EIF2 signaling and mechanistic target of Rapamycin pathways and a number of mitochondrial-related pathways. We demonstrate that APE1 has an effect on modifying gene expression up to a threshold of APE1 expression, demonstrating that it is not necessary to completely knockout APE1 in cells to accurately study APE1 function. We validated the findings using a selection of the DEGs along with siRNA knockdown and qRT-PCR. Testing additional patient-derived pancreatic cancer cells reveals particular genes (ITGA1, TNFAIP2, COMMD7, RAB3D) that respond to APE1 knockdown similarly across all the cell lines. Furthermore, we verified that the redox function of APE1 was responsible for driving gene expression of mitochondrial genes such as PRDX5 and genes that are important for proliferation such as SIPA1 and RAB3D by treating with APE1 redox-specific inhibitor, APX3330. Our study identifies several novel genes and pathways affected by APE1, as well as tumor subtype specificity. These findings will allow for hypothesis-driven approaches to generate combination therapies using, for example, APE1 inhibitor APX3330 with other approved FDA drugs in an innovative manner for pancreatic and other cancer treatments.Item APE1/Ref-1 Regulates STAT3 Transcriptional Activity and APE1/Ref-1–STAT3 Dual-Targeting Effectively Inhibits Pancreatic Cancer Cell Survival(2012-10) Cardoso, Angelo A.; Jiang, Yanlin; Luo, Meihua; Reed, April M.; Shahda, Safi; He, Ying; Maitra, Anirban; Kelley, Mark R.; Fishel, Melissa L.Pancreatic cancer is a largely incurable disease, and increasing evidence supports strategies targeting multiple molecular mediators of critical functions of pancreatic ductal adenocarcinoma cells. Intracellular redox state modulates the activity of various signal transduction pathways and biological processes, including cell survival, drug resistance and responsiveness to microenvironmental factors. Recently, it has been shown that the transcription factor STAT3 is under redox control, but the mechanisms involved in its regulation are unknown. Here, we demonstrate for the first time that STAT3 DNA binding and transcriptional activity is directly regulated by the redox function of the APE1/Ref-1 endonuclease, using overexpression and redox-specific mutational strategies, and gene knockdown. Also, pharmacological blockade of APE1/Ref-1 by the redox-selective inhibitor E3330 abrogates STAT3 DNA binding. Since APE1/Ref-1 also exerts redox control on other cancer-associated transcription factors, we assessed the impact of dual-targeting of STAT3 signaling and APE1/Ref-1 redox on pancreatic cancer cell functions. We observed that disruption of APE1/Ref-1 redox activity synergizes with STAT3 blockade to potently inhibit the proliferation and viability of human PDAC cells. Mechanistically, we show that STAT3–APE1/Ref-1 dual targeting promotes marked tumor cell apoptosis, with engagement of caspase-3 signaling, which are significantly increased in comparison to the effects triggered by single target blockade. Also, we show that STAT3–APE1/Ref-1 dual blockade results in significant inhibition of tumor cell migration. Overall, this work demonstrates that the transcriptional activity of STAT3 is directly regulated by the redox function of APE1/Ref-1, and that concurrent blockade of STAT3 and APE1/Ref-1 redox synergize effectively inhibit critical PDAC cell functions.Item APE1/Ref-1 Role in Redox Signaling: Translational Applications of Targeting the Redox Function of the DNA Repair/Redox Protein APE1/Ref-1(2012-01) Kelley, Mark R.; Georgiadis, Millie M.; Fishel, Melissa L.The heterogeneity of most cancers diminishes the treatment effectiveness of many cancer-killing regimens. Thus, treatments that hold the most promise are ones that block multiple signaling pathways essential to cancer survival. One of the most promising proteins in that regard is APE1, whose reduction-oxidation activity influences multiple cancer survival mechanisms, including growth, proliferation, metastasis, angiogenesis, and stress responses. With the continued research using APE1 redox specific inhibitors alone or coupled with developing APE1 DNA repair inhibitors it will now be possible to further delineate the role of APE1 redox, repair and protein-protein interactions. Previously, use of siRNA or over expression approaches, while valuable, do not give a clear picture of the two major functions of APE1 since both techniques severely alter the cellular milieu. Additionally, use of the redox-specific APE1 inhibitor, APX3330, now makes it possible to study how inhibition of APE1’s redox signaling can affect multiple tumor pathways and can potentiate the effectiveness of existing cancer regimens. Because APE1 is an upstream effector of VEGF, as well as other molecules that relate to angiogenesis and the tumor microenvironment, it is also being studied as a possible treatment for age-related macular degeneration and diabetic retinopathy. This paper reviews all of APE1’s functions, while heavily focusing on its redox activities. It also discusses APE1’s altered expression in many cancers and the therapeutic potential of selective inhibition of redox regulation, which is the subject of intense preclinical studies.Item Apurinic/Apyrimidinic Endonuclease 1 Regulates Inflammatory Response in Macrophages(2011-02) Jedinak, Andrej; Dudhgaonkar, Shailesh; Kelley, Mark R.; Sliva, DanielThe multi-functional apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) DNA repair and redox signaling protein has been shown to have a role in cancer growth and survival, however, little has been investigated concerning its role in inflammation. In this study, an APE1 redox-specific inhibitor (E3330) was used in lypopolysaccharide (LPS)-stimulated macrophages (RAW264.7). E3330 clearly suppressed secretion of inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL-6) and IL-12 and inflammatory mediators nitric oxide (NO) as well as prostaglandin E2 (PGE2) from the LPS-stimulated RAW264.7 cells. These data were supported by the down-regulation of the LPS-dependent expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) genes in the RAW264.7 cells. The effects of E3330 were mediated by the inhibition of transcription factors nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) in the LPS-stimulated macrophages, both known targets of APE1. In conclusion, pharmacological inhibition of APE1 by E3330 suppresses inflammatory response in activated macrophages and can be considered as a novel therapeutic strategy for the inhibition of tumor-associated macrophages.